Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism

Abstract

Tumor cells often subvert normal regulatory mechanisms of signal transduction. This study shows this principle by studying yet uncharacterized mutants of the epidermal growth factor receptor (EGFR) previously identified in glioblastoma multiforme, which is the most aggressive brain tumor in adults. Unlike the well-characterized EGFRvIII mutant form, which lacks a portion of the ligand-binding cleft within the extracellular domain, EGFRvIVa and EGFRvIVb lack internal segments distal to the intracellular tyrosine kinase domain. By constructing the mutants and by ectopic expression in naive cells, we show that both mutants confer an oncogenic potential in vitro, as well as tumorigenic growth in animals. The underlying mechanisms entail constitutive receptor dimerization and basal activation of the kinase domain, likely through a mechanism that relieves a restraining molecular fold, along with stabilization due to association with HSP90. Phosphoproteomic analyses delineated the signaling pathways preferentially engaged by EGFRvIVb-identified unique substrates. This information, along with remarkable sensitivities to tyrosine kinase blockers and to a chaperone inhibitor, proposes strategies for pharmacological interception in brain tumors harboring EGFRvIV mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • An WG, Schulte TW, Neckers LM . (2000). The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 11: 355–360.

    CAS  PubMed  Google Scholar 

  • Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ et al. (2003). An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12: 541–552.

    Article  CAS  PubMed  Google Scholar 

  • Chiara F, Bishayee S, Heldin CH, Demoulin JB . (2004). Autoinhibition of the platelet-derived growth factor beta-receptor tyrosine kinase by its C-terminal tail. J Biol Chem 279: 19732–19738.

    Article  CAS  PubMed  Google Scholar 

  • Chiosis G, Huezo H, Rosen N, Mimnaugh E, Whitesell L, Neckers L . (2003). 17AAG: low target binding affinity and potent cell activity--finding an explanation. Mol Cancer Ther 2: 123–129.

    CAS  PubMed  Google Scholar 

  • Clarkson RW, Boland MP, Kritikou EA, Lee JM, Freeman TC, Tiffen PG et al. (2006). The genes induced by signal transducer and activators of transcription (STAT)3 and STAT5 in mammary epithelial cells define the roles of these STATs in mammary development. Mol Endocrinol 20: 675–685.

    Article  CAS  PubMed  Google Scholar 

  • Dawson JP, Berger MB, Lin CC, Schlessinger J, Lemmon MA, Ferguson KM . (2005). Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol Cell Biol 25: 7734–7742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekstrand AJ, Sugawa N, James CD, Collins VP . (1992). Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 89: 4309–4313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederick L, Wang XY, Eley G, James CD . (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60: 1383–1387.

    CAS  PubMed  Google Scholar 

  • Gan HK, Kaye AH, Luwor RB . (2009). The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 16: 748–754.

    Article  CAS  PubMed  Google Scholar 

  • Getz G, Levine E, Domany E . (2000). Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 97: 12079–12084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh N, Tojo A, Hino M, Yazaki Y, Shibuya M . (1992). A highly conserved tyrosine residue at codon 845 within the kinase domain is not required for the transforming activity of human epidermal growth factor receptor. Biochem Biophys Res Commun 186: 768–774.

    Article  CAS  PubMed  Google Scholar 

  • Hafizi S, Dahlback B . (2006). Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev 17: 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK et al. (2007). Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 104: 12867–12872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang PH, Xu AM, White FM . (2009). Oncogenic EGFR signaling networks in glioma. Sci Signal 2: re6.

    PubMed  Google Scholar 

  • Hynes NE, MacDonald G . (2009). ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21: 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Jeuken J, Sijben A, Alenda C, Rijntjes J, Dekkers M, Boots-Sprenger S et al. (2009). Robust detection of EGFR copy number changes and EGFR variant III: technical aspects and relevance for glioma diagnostics. Brain Pathol 19: 661–671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH et al. (2009). Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137: 1293–1307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz M, Amit I, Yarden Y . (2007). Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta 1773: 1161–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan CT, Wikstrand CJ, Bigner DD . (2001). EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 8: 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Ladanyi M, Pao W . (2008). Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol 21 (Suppl 2): S16–S22.

    Article  CAS  PubMed  Google Scholar 

  • Landau M, Fleishman SJ, Ben-Tal N . (2004). A putative mechanism for downregulation of the catalytic activity of the EGF receptor via direct contact between its kinase and C-terminal domains. Structure 12: 2265–2275.

    Article  CAS  PubMed  Google Scholar 

  • Lavictoire SJ, Parolin DA, Klimowicz AC, Kelly JF, Lorimer IA . (2003). Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J Biol Chem 278: 5292–5299.

    Article  CAS  PubMed  Google Scholar 

  • Li JJ, Liu DP, Liu GT, Xie D . (2009). EphrinA5 acts as a tumor suppressor in glioma by negative regulation of epidermal growth factor receptor. Oncogene 28: 1759–1768.

    Article  CAS  PubMed  Google Scholar 

  • McManus MJ, Lingle WL, Salisbury JL, Maihle NJ . (1997). A transformation-associated complex involving tyrosine kinase signal adapter proteins and caldesmon links v-erbB signaling to actin stress fiber disassembly. Proc Natl Acad Sci USA 94: 11351–11356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJ . (1996). A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 56: 5079–5086.

    CAS  PubMed  Google Scholar 

  • Pulciani S, Santos E, Lauver AV, Long LK, Barbacid M . (1982). Transforming genes in human tumors. J Cell Biochem 20: 51–61.

    Article  CAS  PubMed  Google Scholar 

  • Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H et al. (2006). Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res 66: 867–874.

    Article  CAS  PubMed  Google Scholar 

  • Shewchuk LM, Hassell AM, Ellis B, Holmes WD, Davis R, Horne EL et al. (2000). Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail. Structure 8: 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Lowell AM, Engelman JA, Shapiro GI . (2005). Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res 65: 6401–6408.

    Article  CAS  PubMed  Google Scholar 

  • Shtiegman K, Kochupurakkal BS, Zwang Y, Pines G, Starr A, Vexler A et al. (2007). Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene 26: 6968–6978.

    Article  CAS  PubMed  Google Scholar 

  • Shu HK, Pelley RJ, Kung HJ . (1991). Dissecting the activating mutations in v-erbB of avian erythroblastosis virus strain R. J Virol 65: 6173–6180.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stamos J, Sliwkowski MX, Eigenbrot C . (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277: 46265–46272.

    Article  CAS  PubMed  Google Scholar 

  • Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S et al. (1996). A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16: 5276–5287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B . (1987). Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84: 6899–6903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH et al. (2004). A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64: 6652–6659.

    Article  CAS  PubMed  Google Scholar 

  • Wykosky J, Gibo DM, Stanton C, Debinski W . (2005). EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res 3: 541–551.

    Article  CAS  PubMed  Google Scholar 

  • Zenz R, Wagner EF . (2006). Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol 38: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J . (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125: 1137–1149.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA et al. (2005). Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4: 1240–1250.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

YY is the incumbent of the Harold and Zelda Goldenberg Professorial Chair. Our work is supported by research grants from the Goldhirsh Foundation, the US National Cancer Institute (NCI; CA072981 to YY, CA118705, CA141556 and U54-CA112967 to FMW), the Israel Science Foundation and Dr Miriam and Sheldon G Adelson Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Yarden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pines, G., Huang, P., Zwang, Y. et al. EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism. Oncogene 29, 5850–5860 (2010). https://doi.org/10.1038/onc.2010.313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.313

Keywords

This article is cited by

Search

Quick links