Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A

Abstract

Here we report that ALDH1L1 (FDH, a folate enzyme with tumor suppressor-like properties) inhibits cell motility. The underlying mechanism involves F-actin stabilization, re-distribution of cytoplasmic actin toward strong preponderance of filamentous actin and formation of actin stress fibers. A549 cells expressing FDH showed a much slower recovery of green fluorescent protein-actin fluorescence in a fluorescence recovery after photobleaching assay, as well as an increase in G-actin polymerization and a decrease in F-actin depolymerization rates in pyren-actin fluorescence assays indicating the inhibition of actin dynamics. These effects were associated with robust dephosphorylation of the actin depolymerizing factor cofilin by PP1 and PP2A serine/threonine protein phosphatases, but not the cofilin-specific phosphatases slingshot and chronophin. In fact, the PP1/PP2A inhibitor calyculin prevented cofilin dephosphorylation and restored motility. Inhibition of FDH-induced apoptosis by the Jun N-terminal kinase inhibitor SP600125 or the pan-caspase inhibitor zVAD-fmk did not restore motility or levels of phosphor-cofilin, indicating that the observed effects are independent of FDH function in apoptosis. Interestingly, cofilin small interfering RNA or expression of phosphorylation-deficient S3A cofilin mutant resulted in a decrease of G-actin and the actin stress fiber formation, the effects seen upon FDH expression. In contrast, the expression of S3D mutant, mimicking constitutive phosphorylation, prevented these effects further supporting the cofilin-dependent mechanism. Dephosphorylation of cofilin and inhibition of motility in response to FDH can also be prevented by the increased folate in media. Furthermore, folate depletion itself, in the absence of FDH, resulted in cofilin dephosphorylation and inhibition of motility in several cell lines. Our experiments showed that these effects were folate specific and not a general response to nutrient starvation. Overall, this study shows the presence of distinct intracellular signaling pathways regulating motility in response to folate status and points toward mechanisms involving folates in promoting a malignant phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y . (2000). The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol 30: 3422–3431.

    Article  CAS  PubMed  Google Scholar 

  • Ananthakrishnan R, Ehrlicher A . (2007). The forces behind cell movement. Int J Biol Sci 3: 303–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballestrem C, Wehrle-Haller B, Imhof BA . (1998). Actin dynamics in living mammalian cells. J Cell Sci 111 (Part 12): 1649–1658.

    CAS  PubMed  Google Scholar 

  • Bamburg JR, Wiggan OP . (2002). ADF/cofilin and actin dynamics in disease. Trends Cell Biol 12: 598–605.

    Article  CAS  PubMed  Google Scholar 

  • Chanson A, Sayd T, Rock E, Chambon C, Sante-Lhoutellier V, Potier de Courcy G et al. (2005). Proteomic analysis reveals changes in the liver protein pattern of rats exposed to dietary folate deficiency. J Nutr 135: 2524–2529.

    Article  CAS  PubMed  Google Scholar 

  • Chhabra D, dos Remedios CG . (2005). Cofilin, actin and their complex observed in vivo using fluorescence resonance energy transfer. Biophys J 89: 1902–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen PT . (2002). Protein phosphatase 1—targeted in many directions. J Cell Sci 115: 241–256.

    CAS  PubMed  Google Scholar 

  • Crott JW, Choi SW, Ordovas JM, Ditelberg JS, Mason JB . (2004). Effects of dietary folate and aging on gene expression in the colonic mucosa of rats: implications for carcinogenesis. Carcinogenesis 25: 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Crott JW, Liu Z, Keyes MK, Choi SW, Jang H, Moyer MP et al. (2008). Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling and folate uptake in human colonic epithelial cell lines. J Nutr Biochem 19: 328–335.

    Article  CAS  PubMed  Google Scholar 

  • DesMarais V, Ghosh M, Eddy R, Condeelis J . (2005). Cofilin takes the lead. J Cell Sci 118: 19–26.

    Article  CAS  PubMed  Google Scholar 

  • dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA et al. (2003). Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83: 433–473.

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn PJ, Creyghton MP, Bernards R . (2009). Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 1795: 1–15.

    CAS  PubMed  Google Scholar 

  • Fox JT, Stover PJ . (2008). Folate-mediated one-carbon metabolism. Vitam Horm 79: 1–44.

    Article  CAS  PubMed  Google Scholar 

  • Franco C, Ho B, Mulholland D, Hou G, Islam M, Donaldson K et al. (2006). Doxycycline alters vascular smooth muscle cell adhesion, migration, and reorganization of fibrillar collagen matrices. Am J Pathol 168: 1697–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghose S, Oleinik NV, Krupenko NI, Krupenko SA . (2009). 10-Formyltetrahydrofolate dehydrogenase-induced c-Jun-NH2-kinase pathways diverge at the c-Jun-NH2-kinase substrate level in cells with different p53 status. Mol Cancer Res 7: 99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gohla A, Birkenfeld J, Bokoch GM . (2005). Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol 7: 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Hall AL, Warren V, Condeelis J . (1989). Transduction of the chemotactic signal to the actin cytoskeleton of Dictyostelium discoideum. Dev Biol 136: 517–525.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hsu FF, Lin TY, Chen JY, Shieh SY . (2010). p53-Mediated transactivation of LIMK2b links actin dynamics to cell cycle checkpoint control. Oncogene 29: 2864–2876.

    Article  CAS  PubMed  Google Scholar 

  • Huang TY, DerMardirossian C, Bokoch GM . (2006). Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 18: 26–31.

    Article  CAS  PubMed  Google Scholar 

  • Janssens V, Longin S, Goris J . (2008). PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33: 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri MS, Wagner C, Trepel JB . (2001). Impact of extracellular folate levels on global gene expression. Mol Pharmacol 60: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  • Jin S, DiPaola RS, Mathew R, White E . (2007). Metabolic catastrophe as a means to cancer cell death. J Cell Sci 120: 379–383.

    Article  CAS  PubMed  Google Scholar 

  • Krupenko SA, Oleinik NV . (2002). 10-Formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells. Cell Growth Differ 13: 227–236.

    CAS  PubMed  Google Scholar 

  • Lai FP, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG et al. (2008). Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 27: 982–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis CM, Smith AK, Kamen BA . (1998). Receptor-mediated folate uptake is positively regulated by disruption of the actin cytoskeleton. Cancer Res 58: 2952–2956.

    CAS  PubMed  Google Scholar 

  • Meberg PJ, Ono S, Minamide LS, Takahashi M, Bamburg JR . (1998). Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. Cell Motil Cytoskeleton 39: 172–190.

    Article  CAS  PubMed  Google Scholar 

  • Merlot S, Firtel RA . (2003). Leading the way: directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J Cell Sci 116: 3471–3478.

    Article  CAS  PubMed  Google Scholar 

  • Montell DJ . (2008). Morphogenetic cell movements: diversity from modular mechanical properties. Science 322: 1502–1505.

    Article  CAS  PubMed  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T . (2002). Control of actin reorganization by slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108: 233–246.

    Article  CAS  PubMed  Google Scholar 

  • Oleinik NV, Krupenko NI, Krupenko SA . (2007). Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene 26: 7222–7230.

    Article  CAS  PubMed  Google Scholar 

  • Oleinik NV, Krupenko NI, Priest DG, Krupenko SA . (2005). Cancer cells activate p53 in response to 10-formyltetrahydrofolate dehydrogenase expression. Biochem J 391: 503–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oleinik NV, Krupenko NI, Reuland SN, Krupenko SA . (2006). Leucovorin-induced resistance against FDH growth suppressor effects occurs through DHFR up-regulation. Biochem Pharmacol 72: 256–266.

    Article  CAS  PubMed  Google Scholar 

  • Oleinik NV, Krupenko SA . (2003). Ectopic expression of 10-formyltetrahydrofolate dehydrogenase in a549 cells induces g(1) cell cycle arrest and apoptosis. Mol Cancer Res 1: 577–588.

    CAS  PubMed  Google Scholar 

  • Oser M, Condeelis J . (2009). The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 108: 1252–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X et al. (2009). Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol 186: 571–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantaloni D, Le Clainche C, Carlier MF . (2001). Mechanism of actin-based motility. Science 292: 1502–1506.

    Article  CAS  PubMed  Google Scholar 

  • Roger L, Gadea G, Roux P . (2006). Control of cell migration: a tumour suppressor function for p53? Biol Cell 98: 141–152.

    Article  CAS  PubMed  Google Scholar 

  • Song X, Chen X, Yamaguchi H, Mouneimne G, Condeelis JS, Eddy RJ . (2006). Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells. J Cell Sci 119: 2871–2881.

    Article  CAS  PubMed  Google Scholar 

  • Turner DP, Moussa O, Sauane M, Fisher PB, Watson DK . (2007). Prostate-derived ETS factor is a mediator of metastatic potential through the inhibition of migration and invasion in breast cancer. Cancer Res 67: 1618–1625.

    Article  CAS  PubMed  Google Scholar 

  • Tyagi SC, Kumar SG, Alla SR, Reddy HK, Voelker DJ, Janicki JS . (1996). Extracellular matrix regulation of metalloproteinase and antiproteinase in human heart fibroblast cells. J Cell Physiol 167: 137–147.

    Article  CAS  PubMed  Google Scholar 

  • van Rheenen J, Condeelis J, Glogauer M . (2009). A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 122: 305–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Rheenen J, Song X, van Roosmalen W, Cammer M, Chen X, Desmarais V et al. (2007). EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J Cell Biol 179: 1247–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner C . (1995). Biochemical role of folate in cellular metabolism. In: Bailey LB (ed). Folate in Health and Disease. Marcel Dekker Inc.: New York. pp 23–42.

    Google Scholar 

  • Wang W, Eddy R, Condeelis J . (2007). The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7: 429–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Mouneimne G, Sidani M, Wyckoff J, Chen X, Makris A et al. (2006). The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol 173: 395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiggan O, Bernstein BW, Bamburg JR . (2005). A phosphatase for cofilin to be HAD. Nat Cell Biol 7: 8–9.

    Article  CAS  PubMed  Google Scholar 

  • Williams MJ, Wiklund ML, Wikman S, Hultmark D . (2006). Rac1 signalling in the Drosophila larval cellular immune response. J Cell Sci 119: 2015–2024.

    Article  CAS  PubMed  Google Scholar 

  • Winder SJ, Ayscough KR . (2005). Actin-binding proteins. J Cell Sci 118: 651–654.

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Karin M . (2004). The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol 14: 94–101.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Condeelis J . (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773: 642–652.

    Article  CAS  PubMed  Google Scholar 

  • Yujiri T, Ware M, Widmann C, Oyer R, Russell D, Chan E et al. (2000). MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation. Proc Natl Acad Sci USA 97: 7272–7277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Q, Bamburg JR, Badwey JA . (2003). Products of phosphoinositide specific phospholipase C can trigger dephosphorylation of cofilin in chemoattractant stimulated neutrophils. Cell Motil Cytoskeleton 54: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Goldman ID . (2003). Resistance to antifolates. Oncogene 22: 7431–7457.

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Matherly LH, Goldman ID . (2009). Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med 11: e4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Cabrera RM, Wlodarczyk BJ, Bozinov D, Wang D, Schwartz RJ et al. (2007). Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity. BMC Dev Biol 7: 128.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The construct for expression of GFP/actin fusion was a kind gift from Dr Imhof. Vectors for expression of S3A and S3D cofilin mutants were generous gifts from Dr Shieh. The authors would like to thank Dr Condeelis for the helpful discussion. This work was supported by National Institutes of Health Grants DK054388 and CA095030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Krupenko.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleinik, N., Krupenko, N. & Krupenko, S. ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A. Oncogene 29, 6233–6244 (2010). https://doi.org/10.1038/onc.2010.356

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.356

Keywords

This article is cited by

Search

Quick links