Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Negative regulation of the tumor suppressor p53 gene by microRNAs

Abstract

The tumor suppressor p53, encoded by the TP53 gene, is recognized as the guardian of the human genome because it regulates many downstream genes to exercise its function in cell cycle and cell death. Recent studies have revealed that several microRNAs (miRNAs) are important components of the p53 tumor suppressor network with miR-125b and miR-504 directly targeting TP53. In this study, we use a screening method to identify that two miRNAs (miR-25 and miR-30d) directly target the 3′UTR of TP53 to downregulate p53 protein levels and reduce the expression of genes that are transcriptionally activated by p53. Correspondingly, both miR-25 and miR-30d adversely affect apoptotic cell death, cell cycle arrest and cellular senescence. Inhibition of either miR-25 or miR-30d expression increases endogenous p53 expression and elevates cellular apoptosis in several cell lines, including one from multiple myeloma that has little TP53 mutations. Thus, beyond miR-125b and miR-504, the human TP53 gene is negatively regulated by two more miRNAs: miR-25 and miR-30d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17: 1298–1307.

    Article  CAS  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26: 745–752.

    Article  CAS  Google Scholar 

  • Chng WJ, Price-Troska T, Gonzalez-Paz N, Van Wier S, Jacobus S, Blood E et al. (2007). Clinical significance of TP53 mutation in myeloma. Leukemia 21: 582–584.

    Article  CAS  Google Scholar 

  • Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al. (2004). Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64: 1546–1558.

    Article  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140–144.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The Hallmarks of Cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    Article  CAS  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134.

    Article  CAS  Google Scholar 

  • Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS et al. (2010). Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38: 689–699.

    Article  CAS  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . (2004). Human microRNA targets. PLoS Biol 2: e363.

    Article  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  Google Scholar 

  • Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y et al. (2009). The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 136: 1689–1700.

    Article  CAS  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37: 495.

    Article  CAS  Google Scholar 

  • Kruse J-P, Gu W . (2009). Modes of p53 Regulation. Cell 137: 609–622.

    Article  CAS  Google Scholar 

  • Le MTN, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V et al. (2009). MicroRNA-125b is a novel negative regulator of p53. Genes & Dev 23: 862–876.

    Article  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  Google Scholar 

  • Mayer B, Oberbauer R . (2003). Mitochondrial regulation of apoptosis. News Physiol Sci 18: 89–94.

    CAS  PubMed  Google Scholar 

  • Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM et al. (2006). A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126: 1203–1217.

    Article  CAS  Google Scholar 

  • Park SY, Lee JH, Ha M, Nam JW, Kim VN . (2009). miR-29 miRNAs activate p53 by targeting p85α and CDC42. Nat Struct Mol Biol 16: 23–29.

    Article  CAS  Google Scholar 

  • Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al. (2008). E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13: 272–286.

    Article  CAS  Google Scholar 

  • Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D et al. (2008). MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 105: 12885–12890.

    Article  CAS  Google Scholar 

  • Prendergast NJ, Atkins MR, Schatte EC, Paulson DF, Walther PJ . (1996). p53 immunohistochemical and genetic alterations are associated at high incidence with post-irradiated locally persistent prostate carcinoma. J Urol 155: 1685–1692.

    Article  CAS  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26: 731–743.

    Article  CAS  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  Google Scholar 

  • Suzuki S, Adachi A, Hiraiwa A, Ohashi M, Ishibashi M, Kiyono T . (1998). Cloning and characterization of human MCM7 promoter. Gene 216: 85–91.

    Article  CAS  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6: 1586–1593.

    Article  CAS  Google Scholar 

  • Toledo F, Wahl GM . (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923.

    Article  CAS  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.

    Article  CAS  Google Scholar 

  • Voeller HJ, Sugars LY, Pretlow T, Gelmann EP . (1994). p53 oncogene mutations in human prostate cancer specimens. J Urol 151: 492–495.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124: 1169–1181.

    Article  CAS  Google Scholar 

  • Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell 137: 413–431.

    Article  CAS  Google Scholar 

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L et al. (1999). GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96: 3706–3711.

    Article  CAS  Google Scholar 

  • Xiong W, Wu X, Starnes S, Johnson SK, Haessler J, Wang S et al. (2008). An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 112: 4235–4246.

    Article  CAS  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445: 656–660.

    Article  CAS  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189–198.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y L is supported by the Director's Biomarker Award from the Center for Environmental Genomics and Integrative Biology, funded by NIEHS/NIH (P30ES014443), Kentucky Lung Cancer Research Program, NCI/NIH (R01CA138688) and NCRR/NIH (P20 RR024489). K H Y is supported by the University of Wisconsin Paul Carbone Comprehensive Cancer Center Award, the Gundersen Medical Foundation Award, the University of Wisconsin Pathology R & D Fund and by NCI/NIH (P20CA103697 and 1RC1CA146299). We are grateful to the critical reviews from Drs Korise E Rasmusson and Nancy C Martin.Authorship contributions: MK, ZL, AT and WC performed research; NC and KY contributed human specimens; ZL, MK, KR, KY and YL designed research, analyzed data and wrote the paper; and all authors reviewed the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Lu, Z., Takwi, A. et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 30, 843–853 (2011). https://doi.org/10.1038/onc.2010.457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.457

Keywords

This article is cited by

Search

Quick links