Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SUMO E3 ligase activity of TRIM proteins

Abstract

SUMOylation governs numerous cellular processes and is essential to most eukaryotic life. Despite increasing recognition of the importance of this process, an extremely limited number of small ubiquitin-like modifier (SUMO) protein ligases (E3s) have been identified. Here we show that at least some members of the functionally diverse tripartite motif (TRIM) superfamily are SUMO E3s. These TRIM proteins bind both the SUMO-conjugating enzyme Ubc9 and substrates and strongly enhance transfer of SUMOs from Ubc9 to these substrates. Among the substrates of TRIM SUMO E3s are the tumor suppressor p53 and its principal antagonist Mdm2. The E3 activity depends on the TRIM motif, suggesting it to be the first widespread SUMO E3 motif. Given the large number of TRIM proteins, our results may greatly expand the identified SUMO E3s. Furthermore, TRIM E3 activity may be an important contributor to SUMOylation specificity and the versatile functions of TRIM proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bernardi R, Pandolfi PP . (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8: 1006–1016.

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP . (2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6: 665–672.

    Article  CAS  PubMed  Google Scholar 

  • Borden KL . (2002). Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol 22: 5259–5269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao T, Duprez E, Borden KL, Freemont PS, Etkin LD . (1998). Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML. J Cell Sci 111 (Pt 10): 1319–1329.

    CAS  PubMed  Google Scholar 

  • Chen L, Chen J . (2003). MDM2-ARF complex regulates p53 sumoylation. Oncogene 22: 5348–5357.

    Article  CAS  PubMed  Google Scholar 

  • Dellaire G, Bazett-Jones DP . (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26: 963–977.

    Article  CAS  PubMed  Google Scholar 

  • Deshaies RJ, Joazeiro CA . (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem 78: 399–434.

    Article  CAS  PubMed  Google Scholar 

  • Duprez E, Saurin AJ, Desterro JM, Lallemand-Breitenbach V, Howe K, Boddy MN et al. (1999). SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 112 (Pt 3): 381–393.

    CAS  PubMed  Google Scholar 

  • Geiss-Friedlander R, Melchior F . (2007). Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947–956.

    Article  CAS  PubMed  Google Scholar 

  • Gillot I, Matthews C, Puel D, Vidal F, Lopez P . (2009). Ret finger protein: An E3 ubiquitin ligase juxtaposed to the XY body in meiosis. Int J Cell Biol 2009: 524858.

    Article  PubMed  Google Scholar 

  • Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A et al. (2009). System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2: ra24.

    Article  PubMed  Google Scholar 

  • Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W et al. (2000). The function of PML in p53-dependent apoptosis. Nat Cell Biol 2: 730–736.

    Article  CAS  PubMed  Google Scholar 

  • Hay RT . (2005). SUMO: a history of modification. Mol Cell 18: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A . (1998). The ubiquitin system. Annu Rev Biochem 67: 425–479.

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser M . (2001). SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107: 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Hoeller D, Hecker CM, Dikic I . (2006). Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 6: 776–788.

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES . (2004). Protein modification by SUMO. Annu Rev Biochem 73: 355–382.

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES, Gupta AA . (2001). An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106: 735–744.

    Article  CAS  PubMed  Google Scholar 

  • Kagey MH, Melhuish TA, Wotton D . (2003). The polycomb protein Pc2 is a SUMO E3. Cell 113: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Kahyo T, Nishida T, Yasuda H . (2001). Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8: 713–718.

    Article  CAS  PubMed  Google Scholar 

  • Kamitani T, Kito K, Nguyen HP, Wada H, Fukuda-Kamitani T, Yeh ET . (1998). Identification of three major sentrinization sites in PML. J Biol Chem 273: 26675–26682.

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Lee SW, Lee EJ, Choi SJ, Chung SS, Lee JI et al. (2006). SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat Cell Biol 8: 1424–1431.

    Article  CAS  PubMed  Google Scholar 

  • Meroni G, Diez-Roux G . (2005). TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 27: 1147–1157.

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A . (2000). c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275: 13321–13329.

    Article  CAS  PubMed  Google Scholar 

  • Nisole S, Stoye JP, Saib A . (2005). TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3: 799–808.

    Article  CAS  PubMed  Google Scholar 

  • Ozato K, Shin DM, Chang TH, Morse III HC . (2008). TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8: 849–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichler A, Gast A, Seeler JS, Dejean A, Melchior F . (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108: 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Quimby BB, Yong-Gonzalez V, Anan T, Strunnikov AV, Dasso M . (2006). The promyelocytic leukemia protein stimulates SUMO conjugation in yeast. Oncogene 25: 2999–3005.

    Article  CAS  PubMed  Google Scholar 

  • Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L et al. (2001). The tripartite motif family identifies cell compartments. Embo J 20: 2140–2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT . (1999). SUMO-1 modification activates the transcriptional response of p53. Embo J 18: 6455–6461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salomoni P, Bernardi R, Bergmann S, Changou A, Tuttle S, Pandolfi PP . (2005). The promyelocytic leukemia protein PML regulates c-Jun function in response to DNA damage. Blood 105: 3686–3690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salomoni P, Pandolfi PP . (2002). The role of PML in tumor suppression. Cell 108: 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Schwamborn JC, Berezikov E, Knoblich JA . (2009). The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136: 913–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    Article  CAS  PubMed  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J . (2004). The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427: 848–853.

    Article  CAS  PubMed  Google Scholar 

  • Tago K, Chiocca S, Sherr CJ . (2005). Sumoylation induced by the Arf tumor suppressor: a p53-independent function. Proc Natl Acad Sci USA 102: 7689–7694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Ritz J, Cooper GM . (1985). Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42: 581–588.

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY et al. (2006). Critical role for Daxx in regulating Mdm2. Nat Cell Biol 8: 855–862.

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Wu S, Liu H, Stratt R, Barak OG, Shiekhattar R et al. (2004). A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J Biol Chem 279: 20369–20377.

    Article  CAS  PubMed  Google Scholar 

  • Townson SM, Kang K, Lee AV, Oesterreich S . (2006). Novel role of the RET finger protein in estrogen receptor-mediated transcription in MCF-7 cells. Biochem Biophys Res Commun 349: 540–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Yu ZK, Ramalingam A, Grossman SR, Yu JH, Bloch DB et al. (2003). Physical and functional interactions between PML and MDM2. J Biol Chem 278: 29288–29297.

    Article  CAS  PubMed  Google Scholar 

  • Wolf D, Goff SP . (2007). TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 131: 46–57.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Goeres J, Sixt KM, Bekes M, Zhang XD, Salvesen GS et al. (2009). Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. Mol Cell 33: 570–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr PP Pandolfi for providing Pml−/− MEF cells and Drs V Yu, A-M Herr, F Rauscher III and TC Cox for TRIM-expressing plasmids. We also thank E Fischer and S Slattery for technical assistance and A Stonestrom for help with manuscript preparation. Supported by NIH (CA088868 and GM060911) to XY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, Y., Yang, X. SUMO E3 ligase activity of TRIM proteins. Oncogene 30, 1108–1116 (2011). https://doi.org/10.1038/onc.2010.462

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.462

Keywords

This article is cited by

Search

Quick links