Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activated MEK cooperates with Ink4a/Arf loss or Akt activation to induce gliomas in vivo

Abstract

The RAS/RAF mitogen-activated protein kinase pathway (MAPK) is highly active in many tumor types including the majority of high-grade gliomas and expression of activated RAS or RAF in neural progenitor cells combined with either AKT activation or Ink4a/Arf loss leads to the development of high-grade gliomas in vivo. This strongly suggests that this pathway is necessary for glioma formation and maintenance. To further define the role of this pathway in the development of high-grade gliomas, we used the established RCAS/TVA glioma mouse model to test the ability of activated MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK), a RAF effector, to induce tumors in vivo in the context of activated AKT or Ink4a/Arf loss. Although expression of activated MEK alone in neural progenitor cells is not sufficient for tumorigenesis, the combination of activated MEK and AKT or MEK with Ink4a/Arf loss is transforming. The data reveal that activation of the classical RAS/MAPK pathway, which is mediated through MEK, leads to the development of high-grade gliomas in vivo and suggest that MEK may be a relevant target for glioma therapy. To test this, we treated both mouse and human glioma cells with the MEK inhibitor PD0325901. Although this treatment induced apoptosis in a significant percentage of the cells, the effect was enhanced by combined treatment with the phosphatidylinositol 3-kinase (PI3K)/mTOR inhibitor NVP-BEZ235. Our results demonstrate that combined inhibition of MEK and PI3K/mTOR is a rational strategy for the treatment of high-grade gliomas and may be an effective adjuvant therapy for this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Balmanno K, Cook SJ . (2009). Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 16: 368–377.

    Article  CAS  Google Scholar 

  • Beier D, Rohrl S, Pillai DR, Schwarz S, Kunz-Schughart LA, Leukel P et al. (2008). Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 68: 5706–5715.

    Article  CAS  Google Scholar 

  • Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A et al. (2009). Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4: e7752.

    Article  PubMed Central  Google Scholar 

  • Chin L, Pomerantz J, DePinho RA . (1998). The INK4a/ARF tumor suppressor: one gene—two products—two pathways. Trends Biochem Sci 23: 291–296.

    Article  CAS  Google Scholar 

  • Council NR, Research IoLA, Sciences CoL . (1996). Guide for the Care and Use of Laboratory Animals, 7th edn. National Academy Press: Washington, D.C., 140pp.

    Google Scholar 

  • Federspiel M, Hughes S . (1997). Retroviral gene delivery. In: Emerson C, Sweeney H (eds). Methods in Cell Biology: Methods in Muscle Biology. Academic Press: San Diego, pp, 179–214.

    Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21: 2683–2710.

    Article  CAS  Google Scholar 

  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN . (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25: 55–57.

    Article  CAS  Google Scholar 

  • Holmen SL, Williams BO . (2005). Essential role for Ras signaling in glioblastoma maintenance. Cancer Res 65: 8250–8255.

    Article  CAS  PubMed Central  Google Scholar 

  • Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC . (2005). mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 7: 356–368.

    Article  CAS  PubMed Central  Google Scholar 

  • Ichimura K, Schmidt EE, Goike HM, Collins VP . (1996). Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13: 1065–1072.

    CAS  PubMed  Google Scholar 

  • Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK . (1999). Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci USA 96: 2077–2081.

    Article  CAS  Google Scholar 

  • Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K et al. (2008). Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68: 8673–8677.

    Article  CAS  PubMed Central  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    Article  CAS  Google Scholar 

  • Liu TJ, Koul D, LaFortune T, Tiao N, Shen RJ, Maira SM et al. (2009). NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 8: 2204–2210.

    Article  CAS  PubMed Central  Google Scholar 

  • LoRusso PM, Krishnamurthi SS, Rinehart JJ, Nabell LM, Malburg L, Chapman PB et al. (2010). Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res 16: 1924–1937.

    Article  CAS  Google Scholar 

  • Lyustikman Y, Momota H, Pao W, Holland EC . (2008). Constitutive activation of Raf-1 induces glioma formation in mice. Neoplasia 10: 501–510.

    Article  CAS  PubMed Central  Google Scholar 

  • Mansour SJ, Candia JM, Matsuura JE, Manning MC, Ahn NG . (1996). Interdependent domains controlling the enzymatic activity of mitogen-activated protein kinase kinase 1. Biochemistry 35: 15529–15536.

    Article  CAS  Google Scholar 

  • Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C . (1997). Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23: 35–61.

    Article  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812.

    Article  CAS  PubMed Central  Google Scholar 

  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ . (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000.

    Article  CAS  Google Scholar 

  • Roberts PJ, Der CJ . (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26: 3291–3310.

    Article  CAS  PubMed Central  Google Scholar 

  • Robinson JP, Vanbrocklin MW, Guilbeault AR, Signorelli DL, Brandner S, Holmen SL . (2010). Activated BRAF induces gliomas in mice when combined with Ink4a/Arf loss or Akt activation. Oncogene 29: 335–344.

    Article  CAS  Google Scholar 

  • Roussel MF . (1999). The INK4 family of cell cycle inhibitors in cancer. Oncogene 18: 5311–5317.

    Article  CAS  Google Scholar 

  • Schaefer-Klein J, Givol I, Barsov EV, Whitcomb JM, VanBrocklin M, Foster DN et al. (1998). The EV-O-derived cell line DF-1 supports the efficient replication of avian leukosis-sarcoma viruses and vectors. Virology 248: 305–311.

    Article  CAS  Google Scholar 

  • Serrano M, Hannon GJ, Beach D . (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366: 704–707.

    Article  CAS  PubMed Central  Google Scholar 

  • Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10: 459–466.

    Article  CAS  Google Scholar 

  • TCGA (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Article  Google Scholar 

  • Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC . (2002). Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62: 5551–5558.

    CAS  PubMed  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.

    Article  CAS  PubMed Central  Google Scholar 

  • Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116: 855–867.

    Article  CAS  Google Scholar 

  • Wang D, Boerner SA, Winkler JD, LoRusso PM . (2007). Clinical experience of MEK inhibitors in cancer therapy. Biochim Biophys Acta 1773: 1248–1255.

    Article  CAS  Google Scholar 

  • Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM et al. (2009). PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69: 4286–4293.

    Article  CAS  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R . (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.

    Article  CAS  Google Scholar 

  • Zhang Y, Xiong Y, Yarbrough WG . (1998). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Han-Mo Koo, Eric Holland and Ronald DePinho for reagents and advice. We thank James Symanowski for assistance with statistical analysis of the data. We also thank Novartis Pharmaceuticals for providing the NVP-BEZ235. This work was supported by the Nevada Cancer Institute, the National Brain Tumor Foundation and RSG-06-198-01-TBE from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S L Holmen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, J., VanBrocklin, M., Lastwika, K. et al. Activated MEK cooperates with Ink4a/Arf loss or Akt activation to induce gliomas in vivo. Oncogene 30, 1341–1350 (2011). https://doi.org/10.1038/onc.2010.513

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.513

Keywords

Search

Quick links