Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

IKK-dependent, NF-κB-independent control of autophagic gene expression

Abstract

The induction of mammalian autophagy, a cellular catabolic bulk-degradation process conserved from humans to yeast, was recently shown to require IκB kinase (IKK), the upstream regulator of the nuclear factor (NF)-κB pathway. Interestingly, it was shown that this response did not involve NF-κB. Thus, the mechanism by which IKK promotes stimulus-induced autophagy is largely unknown. Here, we investigate the role of IKK/NF-κB in response to nutrient deprivation, the well-understood autophagy-inducing stimulus. IKK and both the classic and non-canonical pathways of NF-κB are robustly induced in response to cellular starvation. Notably, cells lacking either catalytic subunit of IKK (IKK-α or IKK-β) fail to induce autophagy in response to cellular starvation. Importantly, we show that IKK activity but not NF-κB controls basal expression of the proautophagic gene LC3. We further demonstrate that starvation induces the expression of LC3 and two other essential autophagic genes ATG5 and Beclin-1 in an IKK-dependent manner. These results indicate that the IKK complex is a central mediator of starvation-induced autophagy in mammalian cells, and suggest that this requirement occurs at least in part through the regulation of autophagic gene expression. Interestingly, NF-κB subunits are dispensable for both basal and starvation-induced expression of proautophagic genes. However, starvation-induced activation of NF-κB is not inconsequential, as increases in expression of antiapoptotic NF-κB target genes such as Birc3 are observed in response to cellular starvation. Thus, IKK likely has multiple roles in response to starvation by regulating NF-κB-dependent antiapoptotic gene expression as well as controlling expression of autophagic genes through a yet undetermined mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Araki K, Kawauchi K, Tanaka N . (2008). IKK/NF-kappaB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors. Oncogene 27: 5696–5705.

    Article  CAS  PubMed  Google Scholar 

  • Barré B, Perkins N . (2007). A cell cycle regulatory network controlling NF-kappaB subunit activity and function. EMBO J 26: 4841–4855.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barré B, Perkins ND . (2010). The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis. Mol Cell 38: 524–538.

    Article  PubMed  Google Scholar 

  • Bednarski BK, Baldwin AS, Kim HJ . (2009). Addressing reported pro-apoptotic functions of NF-kappaB: targeted inhibition of canonical NF-kappaB enhances the apoptotic effects of doxorubicin. PLoS ONE 4: e6992.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bensaad K, Cheung E, Vousden K . (2009). Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28: 3015–3026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubici C, Papa S, Dean K, Franzoso G . (2006). Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25: 6731–6748.

    Article  CAS  PubMed  Google Scholar 

  • Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C . (2009). p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29: 2594–2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR et al. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121–134.

    Article  CAS  PubMed  Google Scholar 

  • Criollo A, Senovilla L, Authier H, Maiuri M, Morselli E, Vitale I et al. (2009). The IKK complex contributes to the induction of autophagy. EMBO J 29: 619–631.

    Article  PubMed  PubMed Central  Google Scholar 

  • Djavaheri-Mergny M, Amelotti M, Mathieu J, Besançon F, Bauvy C, Souquère S et al. (2006). NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281: 30373–30382.

    Article  CAS  PubMed  Google Scholar 

  • Gilmore T . (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25: 6680–6684.

    Article  CAS  PubMed  Google Scholar 

  • Hacker H, Karin M . (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006: re13.

    Article  PubMed  Google Scholar 

  • Hayden MS, Ghosh S . (2004). Signaling to NF-kappaB. Genes Dev 18: 2195–2224.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Leung TH, Baltimore D . (2003). Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities. EMBO J 22: 5530–5539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ . (2004). Cell biology: regulated self-cannibalism. Nature 431: 31–32.

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS et al. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175.

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G . (2008). Autophagy in the pathogenesis of disease. Cell 132: 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Yuan J . (2005). Autophagy in cell death: an innocent convict? J Clin Invest 115: 2679–2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi L, Ciana P, Cappellini C, Trecca D, Guerrini L, Migliazza A et al. (1995). Structural and functional characterization of the promoter regions of the NFKB2 gene. Nucleic Acids Res 23: 2328–2336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, D'Acquisto F, Madge LA, Glöckner J, Pober JS, Ghosh S . (2000). Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 289: 1550–1554.

    Article  CAS  PubMed  Google Scholar 

  • Polager S, Ofir M, Ginsberg D . (2008). E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27: 4860–4864.

    Article  CAS  PubMed  Google Scholar 

  • Renner F, Schmitz ML . (2009). Autoregulatory feedback loops terminating the NF-kappaB response. Trends Biochem Sci 34: 128–135.

    Article  CAS  PubMed  Google Scholar 

  • Saccani S, Pantano S, Natoli G . (2001). Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 193: 1351–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw J, Yurkova N, Zhang T, Gang H, Aguilar F, Weidman D et al. (2008). Antagonism of E2F-1 regulated Bnip3 transcription by NF-{kappa}B is essential for basal cell survival. Proc Natl Acad Sci USA 105: 20734–20739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'amelio M et al. (2008). Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10: 676–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegelbauer K, Gantner F, Lukacs NW, Berlin A, Fuchikami K, Niki T et al. (2005). A selective novel low-molecular-weight inhibitor of IkappaB kinase-beta (IKK-beta) prevents pulmonary inflammation and shows broad anti-inflammatory activity. Br J Pharmacol 145: 178–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Alexander Hoffmann for the p65/c-Rel DKO cells and to Dr Denis Guttridge for the RelB−/− and p52−/− cells. We thank members of the Baldwin lab for thoughtful discussion and manuscript feedback. Research support was provided by NIH grants CA75080, AI035098, CA73756 and the Waxman Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S Baldwin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comb, W., Cogswell, P., Sitcheran, R. et al. IKK-dependent, NF-κB-independent control of autophagic gene expression. Oncogene 30, 1727–1732 (2011). https://doi.org/10.1038/onc.2010.553

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.553

Keywords

Search

Quick links