Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ATR mediates cisplatin resistance in a p53 genotype-specific manner

Abstract

The protein kinase encoded by the ataxia telangiectasia and Rad3-related (ATR) gene is activated by DNA-damaging agents that are frequently used as anticancer therapeutics. Inhibition of ATR expression in cultured cancer cells has been demonstrated to increase sensitivity to chemotherapeutic drugs, including the DNA-crosslinking agent cisplatin. Cisplatin is a widely used and effective drug, but its use is associated with significant toxicity. Here, we demonstrate that genetic inhibition of ATR expression selectively enhanced cisplatin sensitivity in human colorectal cancer cells with inactivated p53. A knock-in strategy was used to restore wild-type p53 in cells harboring wild-type or mutant ATR alleles. Knock-in of functional p53 in ATR-deficient cells restored checkpoint function, suppressed apoptotic pathways and markedly increased clonogenic survival after cisplatin treatment. These results suggest that a strategy that combines specific inhibitors of ATR and conventional therapies might promote synthetic lethality in p53-deficient tumors, and thus minimize toxicity to normal tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ATM:

Ataxia telangiectasia mutated

ATR:

ATM and Rad3-related

HU:

hydroxyurea

IR:

ionizing radiation

References

  • Alderton GK, Joenje H, Varon R, Borglum AD, Jeggo PA, O'Driscoll M . (2004). Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway. Hum Mol Genet 13: 3127–3138.

    Article  CAS  PubMed  Google Scholar 

  • Blasina A, Hallin J, Chen E, Arango ME, Kraynov E, Register J et al. (2008). Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther 7: 2394–2404.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SH, Toouli CD, Fujii GH, Crain C, Parry D . (2005). Chk1 is essential for tumor cell viability following activation of the replication checkpoint. Cell Cycle 4: 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Chung JH, Bunz F . (2010). Cdk2 is required for p53-independent G2/M checkpoint control. PLoS Genet 6: e1000863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cimprich KA, Cortez D . (2008). ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9: 616–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cliby WA, Roberts CJ, Cimprich KA, Stringer CM, Lamb JR, Schreiber SL et al. (1998). Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J 17: 159–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collis SJ, Swartz MJ, Nelson WG, DeWeese TL . (2003). Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res 63: 1550–1554.

    CAS  PubMed  Google Scholar 

  • El-Deiry WS . (2003). The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22: 7486–7495.

    Article  CAS  PubMed  Google Scholar 

  • Hurley PJ, Bunz F . (2007). ATM and ATR: components of an integrated circuit. Cell Cycle 6: 414–417.

    Article  CAS  PubMed  Google Scholar 

  • Hurley PJ, Wilsker D, Bunz F . (2007). Human cancer cells require ATR for cell cycle progression following exposure to ionizing radiation. Oncogene 26: 2535–2542.

    Article  CAS  PubMed  Google Scholar 

  • Jallepalli PV, Lengauer C, Vogelstein B, Bunz F . (2003). The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 278: 20475–20479.

    Article  CAS  PubMed  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H et al. (2009). The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23: 1895–1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirmanova L, Bulavin DV, Fornace Jr AJ . (2005). Inhibition of the ATR/Chk1 pathway induces a p38-dependent S-phase delay in mouse embryonic stem cells. Cell Cycle 4: 1428–1434.

    Article  CAS  PubMed  Google Scholar 

  • Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ et al. (2005). Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68: 1636–1644.

    CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Kodama M, Otsubo C, Hirota T, Yokota J, Enari M, Taya Y . (2010). Requirement of ATM for rapid p53 phosphorylation at Ser46 without Ser/Thr-Gln sequences. Mol Cell Biol 30: 1620–1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Lin S, Wang X, Lian G, Lu Z, Guo H et al. (2009). Axin determines cell fate by controlling the p53 activation threshold after DNA damage. Nat Cell Biol 11: 1128–1134.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald III ER, Hurov KE, Luo J et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  • Meek DW . (2009). Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9: 714–723.

    Article  CAS  PubMed  Google Scholar 

  • Murga M, Bunting S, Montana MF, Soria R, Mulero F, Canamero M et al. (2009). A mouse model of ATR-seckel shows embryonic replicative stress and accelerated aging. Nat Genet 41: 891–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA . (2003). A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in seckel syndrome. Nat Genet 33: 497–501.

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T et al. (2000). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by ser-46-phosphorylated p53. Cell 102: 849–862.

    Article  CAS  PubMed  Google Scholar 

  • Osborn AJ, Elledge SJ, Zou L . (2002). Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12: 509–516.

    Article  CAS  PubMed  Google Scholar 

  • Pabla N, Huang S, Mi QS, Daniel R, Dong Z . (2008). ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem 283: 6572–6583.

    Article  CAS  PubMed  Google Scholar 

  • Pirollo KF, Bouker KB, Chang EH . (2000). Does p53 status influence tumor response to anticancer therapies? Anticancer Drugs 11: 419–432.

    Article  CAS  PubMed  Google Scholar 

  • Rago C, Vogelstein B, Bunz F . (2007). Genetic knockouts and knockins in human somatic cells. Nat Protoc 2: 2734–2746.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB . (2007). p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11: 175–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MA, Wang X et al. (2010). DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint controlled by MK2-mediated RNA stabilization. Mol Cell 40: 34–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt HC, Yaffe MB . (2009). Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21: 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson HM, Jones R, Walker M, Zachos G, Brown R, Cassidy J et al. (2006). Chk1-dependent slowing of S-phase progression protects DT40 B-lymphoma cells against killing by the nucleoside analogue 5-fluorouracil. Oncogene 25: 5359–5369.

    Article  CAS  PubMed  Google Scholar 

  • Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W et al. (2004). Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J 23: 4583–4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzankina Y, Schoppy DW, Asare A, Clark CE, Vonderheide RH, Brown EJ . (2009). Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of atr and Trp53. Nat Genet 41: 1144–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiloh Y . (2006). The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31: 402–410.

    Article  CAS  PubMed  Google Scholar 

  • Sur S, Pagliarini R, Bunz F, Rago C, Diaz Jr LA, Kinzler KW et al. (2009). A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA 106: 3964–3969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taira M, Nihira K, Yamaguchi T, Miki Y, Yoshida K . (2007). DYRK2 is targeted to the nucleus and controls p53 via phosphorylation in the apoptotic response to DNA damage. Mol Cell 25: 725–738.

    Article  CAS  PubMed  Google Scholar 

  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY et al. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13: 152–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topaloglu O, Hurley PJ, Yildirim O, Civin CI, Bunz F . (2005). Improved methods for the generation of human gene knockout and knockin cell lines. Nucleic Acids Res 33: e158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tse AN, Carvajal R, Schwartz GK . (2007). Targeting checkpoint kinase 1 in cancer therapeutics. Clin Cancer Res 13: 1955–1960.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Wagner JM, Karnitz LM . (2009). Cisplatin-induced DNA damage activates replication checkpoint signaling components that differentially affect tumor cell survival. Mol Pharmacol 76: 208–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JM, Kaufmann SH . (2010). Prospects for the use of ATR inhibitors to treat cancer. Pharmaceuticals 3: 1311–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B . (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187–5590.

    CAS  PubMed  Google Scholar 

  • Wilsker D, Bunz F . (2007). Loss of ataxia telangiectasia mutated- and Rad3-related function potentiates the effects of chemotherapeutic drugs on cancer cell survival. Mol Cancer Ther 6: 1406–1413.

    Article  CAS  PubMed  Google Scholar 

  • Wilsker D, Petermann E, Helleday T, Bunz F . (2008). Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc Natl Acad Sci USA 105: 20752–20757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenvirt S, Kravchenko-Balasha N, Levitzki A . (2010). Status of p53 in human cancer cells does not predict efficacy of CHK1 kinase inhibitors combined with chemotherapeutic agents. Oncogene 29: 6149–6159.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Zaugg K, Mak TW, Elledge SJ . (2006). A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126: 529–542.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Flight Attendant Medical Research Institute and the NCI (T32CA121937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Bunz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangster-Guity, N., Conrad, B., Papadopoulos, N. et al. ATR mediates cisplatin resistance in a p53 genotype-specific manner. Oncogene 30, 2526–2533 (2011). https://doi.org/10.1038/onc.2010.624

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.624

Keywords

This article is cited by

Search

Quick links