Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1α-induced metabolic reprograming

Abstract

As chronic myeloid leukemia (CML) progresses from the chronic phase to blast crisis, the levels of BCR-ABL increase. In addition, blast-transformed leukemic cells display enhanced resistance to imatinib in the absence of BCR-ABL-resistance mutations. In this study, we show that when BCR-ABL-transformed cell lines were selected for imatinib resistance in vitro, the cells that grew out displayed a higher BCR-ABL expression comparable to the increase seen in accelerated forms of the disease. This enhanced expression of BCR-ABL was associated with an increased rate of glycolysis but with a decreased rate of proliferation. The higher level of BCR-ABL expression in the selected cells correlated with a nonhypoxic induction of hypoxia-inducible factor-1α (HIF-1α) that was required for cells to tolerate enhanced BCR-ABL signaling. HIF-1α induction resulted in an enhanced rate of glycolysis but with reduced glucose flux through both the tricarboxylic acid cycle and the oxidative arm of the pentose phosphate pathway (PPP). The reduction in oxidative PPP-mediated ribose synthesis was compensated by the HIF-1α-dependent activation of the nonoxidative PPP enzyme, transketolase, in imatinib-resistant CML cells. In both primary cultures of cells from patients exhibiting blast transformation and in vivo xenograft tumors, use of oxythiamine, which can inhibit both the pyruvate dehydrogenase complex and transketolase, resulted in enhanced imatinib sensitivity of tumor cells. Together, these results suggest that oxythiamine can enhance imatinib efficacy in patients who present an accelerated form of the disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A et al. (2005a). Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 65: 8912–8919.

    Article  CAS  PubMed  Google Scholar 

  • Barnes K, McIntosh E, Whetton AD, Daley GQ, Bentley J, Baldwin SA . (2005b). Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation. Oncogene 24: 3257–3267.

    Article  CAS  PubMed  Google Scholar 

  • Bell EL, Chandel NS . (2007). Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem 43: 17–27.

    Article  CAS  PubMed  Google Scholar 

  • Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB et al. (1997). CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90: 4947–4952.

    CAS  PubMed  Google Scholar 

  • Chamberlain BR, Buttery JE, Pannall PR . (1996). A stable reagent mixture for the whole blood transketolase assay. Ann Clin Biochem 33 (Pt 4): 352–354.

    Article  CAS  PubMed  Google Scholar 

  • Deininger M, Buchdunger E, Druker BJ . (2005). The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105: 2640–2653.

    Article  CAS  PubMed  Google Scholar 

  • Dewar AL, Doherty KV, Hughes TP, Lyons AB . (2005). Imatinib inhibits the functional capacity of cultured human monocytes. Immunol Cell Biol 83: 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  • Giuntoli S, Rovida E, Barbetti V, Cipolleschi MG, Olivotto M, Dello Sbarba P . (2006). Hypoxia suppresses BCR/Abl and selects imatinib-insensitive progenitors within clonal CML populations. Leukemia 20: 1291–1293.

    Article  CAS  PubMed  Google Scholar 

  • Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ . (2004). Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res 10: 6661–6668.

    Article  CAS  PubMed  Google Scholar 

  • Gumireddy K, Baker SJ, Cosenza SC, John P, Kang AD, Robell KA et al. (2005). A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci USA 102: 1992–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupte SA, Wolin MS . (2006). Hypoxia promotes relaxation of bovine coronary arteries through lowering cytosolic NADPH. Am J Physiol Heart Circ Physiol 290: H2228–H2238.

    Article  CAS  PubMed  Google Scholar 

  • Haseloff RF, Krause E, Bigl M, Mikoteit K, Stanimirovic D, Blasig IE . (2006). Differential protein expression in brain capillary endothelial cells induced by hypoxia and posthypoxic reoxygenation. Proteomics 6: 1803–1809.

    Article  CAS  PubMed  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8: 311–321.

    Article  CAS  PubMed  Google Scholar 

  • Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC . (2003). Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23: 9361–9374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz J, Rognstad R . (1967). The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis. Biochemistry 6: 2227–2247.

    Article  CAS  PubMed  Google Scholar 

  • Keeshan K, Mills KI, Cotter TG, McKenna SL . (2001). Elevated Bcr-Abl expression levels are sufficient for a haematopoietic cell line to acquire a drug-resistant phenotype. Leukemia 15: 1823–1833.

    Article  CAS  PubMed  Google Scholar 

  • Khorashad JS, Anand M, Marin D, Saunders S, Al-Jabary T, Iqbal A et al. (2006). The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib. Leukemia 20: 658–663.

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV . (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3: 177–185.

    Article  PubMed  Google Scholar 

  • Kominsky DJ, Klawitter J, Brown JL, Boros LG, Melo JV, Eckhardt SG et al. (2009). Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL-positive cells. Clin Cancer Res 15: 3442–3450.

    Article  CAS  PubMed  Google Scholar 

  • Kress S, Stein A, Maurer P, Weber B, Reichert J, Buchmann A et al. (1998). Expression of hypoxia-inducible genes in tumor cells. J Cancer Res Clin Oncol 124: 315–320.

    Article  CAS  PubMed  Google Scholar 

  • Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL et al. (2007). The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21: 1037–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM et al. (2000). Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96: 1070–1079.

    CAS  PubMed  Google Scholar 

  • Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C . (2002). BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 100: 3767–3775.

    Article  CAS  PubMed  Google Scholar 

  • Modi H, McDonald T, Chu S, Yee JK, Forman SJ, Bhatia R . (2007). Role of BCR/ABL gene-expression levels in determining the phenotype and imatinib sensitivity of transformed human hematopoietic cells. Blood 109: 5411–5421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Hare T, Corbin AS, Druker BJ . (2006). Targeted CML therapy: controlling drug resistance, seeking cure. Curr Opin Genet Dev 16: 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ et al. (2007). Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 27: 912–925.

    Article  CAS  PubMed  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC . (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3: 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS et al. (2006). Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol 175: 913–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherbenou DW, Druker BJ . (2007). Applying the discovery of the Philadelphia chromosome. J Clin Invest 117: 2067–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JE, Conlon JP, Yang X, Sanchez PV, Carroll M . (2007). Enhanced growth of myelodysplastic colonies in hypoxic conditions. Exp Hematol 35: 21–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuttle SW, Varnes ME, Mitchell JB, Biaglow JE . (1992). Sensitivity to chemical oxidants and radiation in CHO cell lines deficient in oxidative pentose cycle activity. Int J Radiat Oncol Biol Phys 22: 671–675.

    Article  CAS  PubMed  Google Scholar 

  • Tuttle SW, Maity A, Oprysko PR, Kachur AV, Ayene IS, Biaglow JE et al. (2007). Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration: implications for the mechanism of HIF-1alpha stabilization under moderate hypoxia. J Biol Chem 282: 36790–36796.

    Article  CAS  PubMed  Google Scholar 

  • Zaharevitz DW, Anderson LW, Malinowski NM, Hyman R, Strong JM, Cysyk RL . (1992). Contribution of de-novo and salvage synthesis to the uracil nucleotide pool in mouse tissues and tumors in vivo. Eur J Biochem 210: 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892–10903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Thompson laboratory, especially Tullia Lindsten, Mondira Kundu, Uma Sachdeva and Scott Olejniczak, for helpful suggestions during the study and careful critique of the paper. We thank Dr E Buchdunger (Novartis, Basel, Switzerland) for providing imatinib and Dr EP Reddy (Temple University, Philadelphia) for providing cell lines expressing either the WT or mutant (T315I) form of BCR-ABL. We are grateful to Dr MC Simon (University of Pennsylvania), Dr JL Riley (University of Pennsylvania) and Dr DA Tuveson (Cancer Research UK Cambridge Research Institute, UK) for providing experimental reagents. This work was supported in part by grants from the NCI and NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C B Thompson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, F., Mancuso, A., Bui, T. et al. Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1α-induced metabolic reprograming. Oncogene 29, 2962–2972 (2010). https://doi.org/10.1038/onc.2010.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.67

Keywords

Search

Quick links