Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo

Abstract

Cancer cell resistance to paclitaxel continues to be a major clinical problem. In this study, we utilized microRNA (miRNA) arrays to screen for differentially expressed miRNAs in paclitaxel-resistant cell lines established in vitro. We observed concordant upregulation of miR-135a in paclitaxel-resistant cell lines representing three human malignancies. Subsequently, the role of miRNA-135a was evaluated in an in vivo model of paclitaxel resistance. In this model, mice were inoculated subcutaneously with a non-small cell lung carcinoma cell line and treated with paclitaxel for a prolonged period. In paclitaxel-resistant cell lines, established either in vitro or in vivo, blockage of miR-135a sensitized resistant cell lines to paclitaxel-induced cell death. We further demonstrated a correlation between paclitaxel response and miR-135a expression in paclitaxel-resistant subclones that were established in vivo. The paclitaxel-resistant phenotype of these subclones was maintained upon retransplantation in new mice, as shown by decreased tumor response upon paclitaxel treatment compared with controls. Upregulation of miR-135a was associated with reduced expression of the adenomatous polyposis coli gene (APC). APC knockdown increased paclitaxel resistance in parental cell lines. Our results indicate that paclitaxel resistance is associated with upregulation of miR-135a, both in vitro and in vivo, and is in part determined by miR-135a-mediated downregulation of APC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Anand S, Penrhyn-Lowe S, Venkitaraman AR . (2003). AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Taketo MM . (2007). Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 120: 3327–3335.

    Article  CAS  PubMed  Google Scholar 

  • Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z et al. (2007). MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 6: 1483–1491.

    Article  CAS  PubMed  Google Scholar 

  • Chu Q, Vincent M, Logan D, Mackay JA, Evans WK . (2005). Taxanes as first-line therapy for advanced non-small cell lung cancer: a systematic review and practice guideline. Lung Cancer 50: 355–374.

    Article  PubMed  Google Scholar 

  • Cleveland WS . (1979). Robust locally weighted regression and smoothing scatter plots. J Amer Statist Assoc 74: 829–836.

    Article  Google Scholar 

  • Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK . (2009). MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 8: 1055–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikovskaya D, Schiffmann D, Newton IP, Oakley A, Kroboth K, Sansom O et al. (2007). Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J Cell Biol 176: 183–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dombernowsky P, Gehl J, Boesgaard M, Paaske T, Jensen BV . (1996). Doxorubicin and paclitaxel, a highly active combination in the treatment of metastatic breast cancer. Semin Oncol 23: 23–27.

    CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C et al. (2001). Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3: 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Fong GH . (2008). Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11: 121–140.

    Article  PubMed  Google Scholar 

  • Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A et al. (2010). MiR-148a attenuates paclitaxel-resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 25: 19076–19084.

    Article  Google Scholar 

  • Gelfand VI, Bershadsky AD . (1991). Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol 7: 93–116.

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  PubMed  Google Scholar 

  • Goldie JH, Coldman AJ . (1979). A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63: 1727–1733.

    CAS  PubMed  Google Scholar 

  • Greenberger LM, Lothstein L, Williams SS, Horwitz SB . (1988). Distinct P-glycoprotein precursors are overproduced in independently isolated drug-resistant cell lines. Proc Natl Acad Sci USA 85: 3762–3766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haldar S, Chintapalli J, Croce CM . (1996). Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 56: 1253–1255.

    CAS  PubMed  Google Scholar 

  • He L, Hannon GJ . (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5: 522–531.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM . (1991). Three-dimensional histoculture: origins and applications in cancer research. Cancer Cells 3: 86–92.

    CAS  PubMed  Google Scholar 

  • Huang G, Chen L . (2010). Recombinant human endostatin improves anti-tumor efficacy of paclitaxel by normalizing tumor vasculature in Lewis lung carcinoma. J Cancer Res Clin Oncol 136: 1201–1211.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Nathke IS . (2001). A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat Cell Biol 3: 429–432.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Man S, Graham CH, Kapitain SJ, Teicher BA, Kerbel RS . (1993). Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci USA 90: 3294–3298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF et al. (2008). Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7: 2152–2159.

    Article  CAS  PubMed  Google Scholar 

  • Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F et al. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5: 91–102.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Mackler NJ, Pienta KJ . (2005). Drug insight: use of docetaxel in prostate and urothelial cancers. Nat Clin Pract Urol 2: 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL . (2001). FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15: 2675–2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrogan BT, Gilmartin B, Carney DN, McCann A . (2008). Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 1785: 96–132.

    CAS  PubMed  Google Scholar 

  • Meads MB, Gatenby RA, Dalton WS . (2009). Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9: 665–674.

    Article  CAS  PubMed  Google Scholar 

  • Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M et al. (2008). The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE 3: e4029.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S et al. (2005). Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 11: 298–305.

    CAS  PubMed  Google Scholar 

  • Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A et al. (2008). Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68: 5795–5802.

    Article  CAS  PubMed  Google Scholar 

  • Oguri T, Ozasa H, Uemura T, Bessho Y, Miyazaki M, Maeno K et al. (2008). MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer. Mol Cancer Ther 7: 1150–1155.

    Article  CAS  PubMed  Google Scholar 

  • Okugawa K, Kobayashi H, Hirakawa T, Sonoda T, Ogura T, Nakano H . (2004). In vivo establishment and characterization of a paclitaxel-resistant human ovarian cancer cell line showing enhanced growth properties and drug-resistance only in vivo. J Cancer Res Clin Oncol 130: 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Chatterjee SK, Vrbanac V, Chung I, Mu CJ, Olsen RR et al. (2010). Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci USA 107: 2503–2508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins C, Kim CN, Fang G, Bhalla KN . (1998). Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel- or etoposide-treated HL-60 cells. Cancer Res 58: 4561–4566.

    CAS  PubMed  Google Scholar 

  • Pollard JW . (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A et al. (2007). A comparison of background correction methods for two-colour microarrays. Bioinformatics 23: 2700–2707.

    Article  CAS  PubMed  Google Scholar 

  • Rottenberg S, Nygren AO, Pajic M, van Leeuwen FW, van der Heijden I, van de Wetering K et al. (2007). Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Natl Acad Sci USA 104: 12117–12122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiff PB, Fant J, Horwitz SB . (1979). Promotion of microtubule assembly in vitro by taxol. Nature 277: 665–667.

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Orth JD, Mitchison T . (2008). Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res 68: 3269–3276.

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C . (2008). Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol 111: 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Starling JJ, Maciak RS, Hinson NA, Hoskins J, Laguzza BC, Gadski RA et al. (1990). in vivo selection of human tumor cells resistant to monoclonal antibody-Vinca alkaloid immunoconjugates. Cancer Res 50: 7634–7640.

    CAS  PubMed  Google Scholar 

  • Sudo T, Nitta M, Saya H, Ueno NT . (2004). Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res 64: 2502–2508.

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Mizokami A, Mamiya K, Li YQ, Zhang J, Keller ET et al. (2007). The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines. Prostate 67: 955–967.

    Article  CAS  PubMed  Google Scholar 

  • Teicher BA, Herman TS, Holden SA, Wang YY, Pfeffer MR, Crawford JW et al. (1990). Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247: 1457–1461.

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve DJ, Hembruff SL, Veitch Z, Cecchetto M, Dew WA, Parissenti AM . (2006). cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res Treat 96: 17–39.

    Article  CAS  PubMed  Google Scholar 

  • Wakelee H, Ramalingam S, Belani CP . (2005). Docetaxel in advanced non-small cell lung cancer. Expert Rev Anticancer Ther 5: 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S et al. (2008). miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123: 372–379.

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K et al. (2005). Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434: 338–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YH, Speed T . (2002). Design issues for cDNA microarray experiments. Nat Rev Genet 3: 579–588.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Otevrel T, Gao Z, Ehrlich SM, Fields JZ, Boman BM . (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61: 8664–8667.

    CAS  PubMed  Google Scholar 

  • Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y et al. (2010). MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1). J Biol Chem 285: 21496–21507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr John Heymach of MD Anderson Cancer Institute, Houston, TX and Jeremy Force, Children's Hospital Boston, for kindly providing us with the A549TR cells. This work was supported in part by grant CA37393 from the National Institutes of Health (BRZ), Kendle (AH), KWF Cancer Foundation (AH), the Stichting Fonds Catherine van Tussenbroek (AH), and a US Department of Defense PCRP fellowship (IC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B R Zetter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holleman, A., Chung, I., Olsen, R. et al. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene 30, 4386–4398 (2011). https://doi.org/10.1038/onc.2011.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.148

Keywords

This article is cited by

Search

Quick links