Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations

Abstract

Cell populations of solid cancers and their distant models, the cancer cell lines, have been categorized in sub-populations: cancer stem–tumor-propagating cells (CSC–TPC) versus derived cells, epithelial- versus mesenchymal-type cells, dormant versus actively proliferating cells and so on. CSC–TPC are minimally defined by their operational properties: immortality and the ability to regenerate in vivo or in vitro the whole panel of cancer cells. The epithelial-to-mesenchymal transition (EMT), mostly observed in vitro, generates mesenchymal-type from epithelial-type cells. The converse transition is mesenchymal-to-epithelial transition. In vitro work suggests that CSC–TPC and EMT cell phenotypes overlap. An analysis of the properties of these sub-populations, as studied in vitro, shows that indeed these two phenotypes may be linked to some extent. However, the in vivo counterpart of this relation in human tumors has barely been investigated. A model in which among the EMT cells released from the tumor only the most competent CSC–TPC will succeed to metastasize is proposed. It is suggested that in the Darwinian evolution of cancer cells, many phenotypes reflecting the expression of various programs, reversible to irreversible, exclusive, overlapping or linked coexist and compete with each other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA . (2009). Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S . (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11: R46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P . (2008). Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130: 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  • Alison MR, Islam S, Wright NA . (2010). Stem cells in cancer: instigators and propagators? J Cell Sci 123: 2357–2368.

    Article  CAS  PubMed  Google Scholar 

  • Alison MR, Lim SM, Nicholson LJ . (2011). Cancer stem cells: problems for therapy?. J Pathol 223: 147–161.

    Article  CAS  PubMed  Google Scholar 

  • Atsumi N, Ishii G, Kojima M, Sanada M, Fujii S, Ochiai A . (2008). Podoplanin, a novel marker of tumor-initiating cells in human squamous cell carcinoma A431. Biochem Biophys Res Commun 373: 36–41.

    Article  CAS  PubMed  Google Scholar 

  • Aulmann S, Waldburger N, Penzel R, Andrulis M, Schirmacher P, Sinn HP . (2010). Reduction of CD44(+)/CD24(-) breast cancer cells by conventional cytotoxic chemotherapy. Hum Pathol 41: 574–581.

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Wang L, Agyin J, Tang Y, Lin S, Yeh IT et al. (2010). Doxorubicin in combination with a small TGFbeta inhibitor: a potential novel therapy for metastatic breast cancer in mouse models. PLoS One 5: e10365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baptist M, Dumont JE, Roger PP . (1993). Demonstration of cell cycle kinetics in thyroid primary culture by immunostaining of proliferating cell nuclear antigen: differences in cyclic AMP-dependent and -independent mitogenic stimulations. J Cell Sci 105 (Part 1): 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Barrallo-Gimeno A, Nieto MA . (2005). The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161.

    Article  CAS  PubMed  Google Scholar 

  • Berx G, van Roy F . (2009). Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1: a003129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 15: 235–252.

    Article  PubMed  Google Scholar 

  • Bortolomai I, Canevari S, Facetti I, De Cecco L, Castellano G, Zacchetti A et al. (2010). Tumor initiating cells: Development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle 9: 1194–1206.

    Article  CAS  PubMed  Google Scholar 

  • Brabletz S, Brabletz T . (2010). The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO Rep 11: 670–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82.

    Article  CAS  PubMed  Google Scholar 

  • Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al. (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467: 1109–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S, Parola M . (2010). Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 12: 1383–1430.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, De Smet F, Loges S, Mazzone M . (2009). Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat Rev Clin Oncol 6: 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY et al. (2010). The transcriptional network for mesenchymal transformation of brain tumours. Nature 463: 318–325.

    Article  CAS  PubMed  Google Scholar 

  • Castilla MA, Moreno-Bueno G, Romero-Perez L, Van De V Biscuola M, Lopez-Garcia MA, Prat J et al. (2011). Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol 223: 72–80.

    Article  CAS  PubMed  Google Scholar 

  • Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S . (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453: 544–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Q, Jurisica I, Do T, Hedley DW . (2011). Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically-grown primary xenografts of human pancreatic cancer. Cancer Res 71: 3110–3120.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhu G, Li Y, Padia RN, Dong Z, Pan ZK et al. (2009). Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 69: 9228–9235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen JJ, Rajasekaran AK . (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66: 8319–8326.

    Article  CAS  PubMed  Google Scholar 

  • Clarke MF, Fuller M . (2006). Stem cells and cancer: two faces of eve. Cell 124: 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  • Clement V, Marino D, Cudalbu C, Hamou MF, Mlynarik V, de Tribolet N et al. (2010). Marker-independent identification of glioma-initiating cells. Nat Methods 7: 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Coclet J, Lamy F, Rickaert F, Dumont JE, Roger PP . (1991). Intermediate filaments in normal thyrocytes: modulation of vimentin expression in primary cultures. Mol Cell Endocrinol 76: 135–148.

    Article  CAS  PubMed  Google Scholar 

  • Condeelis J, Segall JE . (2003). Intravital imaging of cell movement in tumours. Nat Rev Cancer 3: 921–930.

    Article  CAS  PubMed  Google Scholar 

  • Cremers N, Deugnier MA, Sleeman J . (2010). Loss of CD24 expression promotes ductal branching in the murine mammary gland. Cell Mol Life Sci 67: 2311–2322.

    Article  CAS  PubMed  Google Scholar 

  • Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA et al. (2009). High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13: 2236–2252.

    Article  PubMed  Google Scholar 

  • Dalerba P, Cho RW, Clarke MF . (2007). Cancer stem cells: models and concepts. Annu Rev Med 58: 267–284.

    Article  CAS  PubMed  Google Scholar 

  • Daly AC, Vizan P, Hill CS . (2010). Smad3 protein levels are modulated by Ras activity and during the cell cycle to dictate transforming growth factor-beta responses. J Biol Chem 285: 6489–6497.

    Article  CAS  PubMed  Google Scholar 

  • Davidson EH . (2010). Emerging properties of animal gene regulatory networks. Nature 468: 911–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graauw M, van Miltenburg MH, Schmidt MK, Pont C, Lalai R, Kartopawiro J et al. (2010). Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad Sci USA 107: 6340–6345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derynck R, Akhurst RJ . (2007). Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol 9: 1000–1004.

    Article  CAS  PubMed  Google Scholar 

  • Dirks P . (2010). Cancer stem cells: Invitation to a second round. Nature 466: 40–41.

    Article  CAS  PubMed  Google Scholar 

  • Dremier S, Taton M, Coulonval K, Nakamura T, Matsumoto K, Dumont JE . (1994). Mitogenic, dedifferentiating, and scattering effects of hepatocyte growth factor on dog thyroid cells. Endocrinology 135: 135–140.

    Article  CAS  PubMed  Google Scholar 

  • Eberth S, Schneider B, Rosenwald A, Hartmann EM, Romani J, Zaborski M et al. (2010). Epigenetic regulation of CD44 in Hodgkin and non-Hodgkin lymphoma. BMC Cancer 10: 517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S . (2006). The epigenetic progenitor origin of human cancer. Nat Rev Genet 7: 21–33.

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Gilmour D . (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10: 445–457.

    Article  CAS  PubMed  Google Scholar 

  • Gao MQ, Choi YP, Kang S, Youn JH, Cho NH . (2010). CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29: 2672–2680.

    Article  CAS  PubMed  Google Scholar 

  • Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E . (2009). Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11: 1287–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L et al. (2010). Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 70: 6945–6956.

    Article  CAS  PubMed  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M et al. (2010). CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120: 485–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosselin K, Martien S, Pourtier A, Vercamer C, Ostoich P, Morat L et al. (2009). Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res 69: 7917–7925.

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Wang W, Wyckoff JB, Condeelis JS . (2004). Breast cancer cells isolated by chemotaxis from primary tumors show increased survival and resistance to chemotherapy. Cancer Res 64: 7664–7667.

    Article  CAS  PubMed  Google Scholar 

  • Greenburg G, Hay ED . (1988). Cytoskeleton and thyroglobulin expression change during transformation of thyroid epithelium to mesenchyme-like cells. Development 102: 605–622.

    Article  CAS  PubMed  Google Scholar 

  • Grunert S, Jechlinger M, Beug H . (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4: 657–665.

    Article  PubMed  CAS  Google Scholar 

  • Gunaratne PH . (2009). Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Curr Stem Cell Res Ther 4: 168–177.

    Article  CAS  PubMed  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138: 645–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Harless WW . (2011). Cancer treatments transform residual cancer cell phenotype. Cancer Cell Int 11: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • He X, Marchionni L, Hansel DE, Yu W, Sood A, Yang J et al. (2009). Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells 27: 1487–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S et al. (2008). Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319: 336–339.

    Article  CAS  PubMed  Google Scholar 

  • Horst D, Scheel SK, Liebmann S, Neumann J, Maatz S, Kirchner T et al. (2009). The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol 219: 427–434.

    Article  CAS  PubMed  Google Scholar 

  • Hu L, McArthur C, Jaffe RB . (2010). Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 102: 1276–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H et al. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69: 3382–3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janes KA, Wang CC, Holmberg KJ, Cabral K, Brugge JS . (2010). Identifying single-cell molecular programs by stochastic profiling. Nat Methods 7: 311–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao X, Katiyar S, Willmarth NE, Liu M, Ma X, Flomenberg N et al. (2010). c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion. J Biol Chem 285: 8218–8226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R et al. (2001). The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 159: 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajita M, McClinic KN, Wade PA . (2004). Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24: 7559–7566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . (2007). Tumor growth need not be driven by rare cancer stem cells. Science 317: 337.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG et al. (2010). A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143: 313–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S et al. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5: e12445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY et al. (2009). Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27: 2059–2068.

    Article  CAS  PubMed  Google Scholar 

  • Kusumbe AP, Bapat SA . (2009). Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69: 9245–9253.

    Article  CAS  PubMed  Google Scholar 

  • Lander AD . (2009). The ‘stem cell’ concept: is it holding us back? J Biol 8: 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  • le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A et al. (2008). In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14: 47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehn S, Tobin NP, Berglund P, Nilsson K, Sims AH, Jirstrom K et al. (2010). Down-regulation of the oncogene cyclin D1 increases migratory capacity in breast cancer and is linked to unfavorable prognostic features. Am J Pathol 177: 2886–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy A, Mareel M, De Bruyne G, Bailey G, Nelis H . (1994). Metastasis of Entamoeba histolytica compared to colon cancer: one more step in invasion. Invasion Metastasis 14: 177–191.

    PubMed  Google Scholar 

  • Li L, Clevers H . (2010). Coexistence of quiescent and active adult stem cells in mammals. Science 327: 542–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Zhong Z, Huang Y, Deng W, Cao J, Tsao G et al. (2010). Stem-like cancer cells are inducible by increasing genomic instability in cancer cells. J Biol Chem 285: 4931–4940.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI et al. (2010). The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 29: 1803–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingala S, Cui YY, Chen X, Ruebner BH, Qian XF, Zern MA et al. (2010). Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma. Exp Mol Pathol 89: 27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ . (1997). Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139: 1861–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Garcia C, Klein AM, Simons BD, Winton DJ . (2010). Intestinal stem cell replacement follows a pattern of neutral drift. Science 330: 822–825.

    Article  CAS  PubMed  Google Scholar 

  • Louie E, Nik S, Chen JS, Schmidt M, Song B, Pacson C et al. (2010). Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12: R94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen CD, Sahai E . (2010). Cancer dissemination--lessons from leukocytes. Dev Cell 19: 13–26.

    Article  CAS  PubMed  Google Scholar 

  • Maenhaut C, Dumont JE, Roger PP, van Staveren WC . (2010). Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis 31: 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Malaise EP, Chavaudra N, Tubiana M . (1973). The relationship between growth rate, labelling index and histological type of human solid tumours. Eur J Cancer 9: 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell 141: 1195–1207.

    Article  CAS  PubMed  Google Scholar 

  • Marusyk A, Polyak K . (2010). Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805: 105–117.

    CAS  PubMed  Google Scholar 

  • Masugi Y, Yamazaki K, Hibi T, Aiura K, Kitagawa Y, Sakamoto M . (2010). Solitary cell infiltration is a novel indicator of poor prognosis and epithelial-mesenchymal transition in pancreatic cancer. Hum Pathol 41: 1061–1068.

    Article  CAS  PubMed  Google Scholar 

  • Mendez MG, Kojima S, Goldman RD . (2010). Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 24: 1838–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlo LM, Maley CC . (2010). The role of genetic diversity in cancer. J Clin Invest 120: 401–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK . (2010). CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 70: 4624–4633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills AA . (2010). Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer 10: 669–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongroo PS, Rustgi AK . (2010). The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther 10: 219–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3: e2888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mun GI, Boo YC . (2010). Identification of CD44 as a senescence-induced cell adhesion gene responsible for the enhanced monocyte recruitment to senescent endothelial cells. Am J Physiol Heart Circ Physiol 298: H2102–H2111.

    Article  CAS  PubMed  Google Scholar 

  • Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al. (2010). TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463: 676–680.

    Article  CAS  PubMed  Google Scholar 

  • Neve P, Dumont JE . (1970). Time sequence of ultrastructural changes in the stimulated dog thyroid. Z Zellforsch Mikrosk Anat 103: 61–74.

    Article  CAS  PubMed  Google Scholar 

  • Nieto MA . (2009). Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. Int J Dev Biol 53: 1541–1547.

    Article  PubMed  Google Scholar 

  • Niinaka Y, Harada K, Fujimuro M, Oda M, Haga A, Hosoki M et al. (2010). Silencing of autocrine motility factor induces mesenchymal-to-epithelial transition and suppression of osteosarcoma pulmonary metastasis. Cancer Res 70: 9483–9493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi S, Natsuizaka M, Wong GS, Michaylira CZ, Grugan KD, Stairs DB et al. (2010). Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res 70: 4174–4184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang G, Wang Z, Fang X, Liu J, Yang CJ . (2010). Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci 67: 2605–2618.

    Article  CAS  PubMed  Google Scholar 

  • Pantel K, Alix-Panabieres C . (2010). Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16: 398–406.

    Article  PubMed  Google Scholar 

  • Pera MF, Tam PP . (2010). Extrinsic regulation of pluripotent stem cells. Nature 465: 713–720.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Losada M, Viscidi RP, Demma JC, Zenilman J, Crandall KA . (2005). Population genetics of Neisseria gonorrhoeae in a high-prevalence community using a hypervariable outer membrane porB and 13 slowly evolving housekeeping genes. Mol Biol Evol 22: 1887–1902.

    Article  CAS  PubMed  Google Scholar 

  • Pietras K, Ostman A . (2010). Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316: 1324–1331.

    Article  CAS  PubMed  Google Scholar 

  • Pinner S, Jordan P, Sharrock K, Bazley L, Collinson L, Marais R et al. (2009). Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res 69: 7969–7977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H . (2008). Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321: 1841–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polyak K, Weinberg RA . (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Pusch A, Boeckenhoff A, Glaser T, Kaminski T, Kirfel G, Hans M et al. (2010). CD44 and hyaluronan promote invasive growth of B35 neuroblastoma cells into the brain. Biochim Biophys Acta 1803: 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . (2008). Efficient tumour formation by single human melanoma cells. Nature 456: 593–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Refaeli Y, Bhoumik A, Roop DR, Ronai ZA . (2009). Melanoma-initiating cells: a compass needed. EMBO Rep 10: 965–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiman JM, Knutson KL, Radisky DC . (2010). Immune promotion of epithelial-mesenchymal transition and generation of breast cancer stem cells. Cancer Res 70: 3005–3008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T et al. (2010). Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468: 824–828.

    Article  CAS  PubMed  Google Scholar 

  • Richardson L, Torres-Padilla ME, Zernicka-Goetz M . (2006). Regionalised signalling within the extraembryonic ectoderm regulates anterior visceral endoderm positioning in the mouse embryo. Mech Dev 123: 288–296.

    Article  CAS  PubMed  Google Scholar 

  • Riesco-Eizaguirre G, Rodriguez I, De la V Costamagna E, Carrasco N, Nistal M, Santisteban P . (2009). The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res 69: 8317–8325.

    Article  CAS  PubMed  Google Scholar 

  • Robson EJ, Khaled WT, Abell K, Watson CJ . (2006). Epithelial-to-mesenchymal transition confers resistance to apoptosis in three murine mammary epithelial cell lines. Differentiation 74: 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141: 583–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sell S . (2006). Potential gene therapy strategies for cancer stem cells. Curr Gene Ther 6: 579–591.

    Article  CAS  PubMed  Google Scholar 

  • Shackleton M . (2010). Normal stem cells and cancer stem cells: similar and different. Semin Cancer Biol 20: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Shackleton M, Quintana E, Fearon ER, Morrison SJ . (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138: 822–829.

    Article  CAS  PubMed  Google Scholar 

  • Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141: 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shervington A, Lu C, Patel R, Shervington L . (2009). Telomerase downregulation in cancer brain stem cell. Mol Cell Biochem 331: 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Shi KH, Wu YG, Xiong BD, Yu X . (2010). [Effects of medicinal extract for tonifying kidney to relieve asthma on glucocorticoid receptor expression in lung tissues of rats with bronchial asthma]. Zhong Xi Yi Jie He Xue Bao 8: 785–789.

    Article  PubMed  Google Scholar 

  • Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis J . (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 38: 114–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Settleman J . (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29: 4741–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C et al. (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143: 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou C, Pusztai L . (2009). Gene-expression signatures in breast cancer. N Engl J Med 360: 790–800.

    Article  CAS  PubMed  Google Scholar 

  • Stahlberg A, Bengtsson M . (2010). Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods 50: 282–288.

    Article  CAS  PubMed  Google Scholar 

  • Tellez CS, Juri DE, Do K, Bernauer AM, Thomas CL, Damiani LA et al. (2011). EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71: 3087–3097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP . (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA . (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Sleeman JP . (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    Article  CAS  PubMed  Google Scholar 

  • To K, Fotovati A, Reipas KM, Law JH, Hu K, Wang J et al. (2010). Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res 70: 2840–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todaro M, Iovino F, Eterno V, Cammareri P, Gambara G, Espina V et al. (2010). Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res 70: 8874–8885.

    Article  CAS  PubMed  Google Scholar 

  • Tomaskovic-Crook E, Thompson EW, Thiery JP . (2009). Epithelial to mesenchymal transition and breast cancer. Breast Cancer Res 11: 213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N et al. (2010). High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70: 5163–5173.

    Article  CAS  PubMed  Google Scholar 

  • van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H et al. (2009). Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28: 4022–4033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA . (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18: 1131–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg RA . (2007). Biology of Cancer Garland Science. Garland Science: New York.

    Google Scholar 

  • Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11: 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhou BP . (2009). Inflammation: a driving force speeds cancer metastasis. Cell Cycle 8: 3267–3273.

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Gore C, Liu J, Pong RC, Mason R, Hao G et al. (2010). Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci USA 107: 2485–2490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XL, Xing BC, Han HB, Zhao W, Hu MH, Xu ZL et al. (2010). The properties of tumor-initiating cells from a hepatocellular carcinoma patient's primary and recurrent tumor. Carcinogenesis 31: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467: 1114–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Cao QJ, Arenas RB, Bentley B, Shao R . (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 285: 14042–14051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF . (2010). Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 107: 3722–3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz M, Christofori G . (2010). Mechanisms of motility in metastasizing cells. Mol Cancer Res 8: 629–642.

    Article  CAS  PubMed  Google Scholar 

  • Zalzman M, Falco G, Sharova LV, Nishiyama A, Thomas M, Lee SL et al. (2010). Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464: 858–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Dumont.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Appendix

Appendix

Pending questions

To understand the roles of EMT and of CSC–TPC in in vivo solid tumors, several points remain to be clarified, such as:

  1. 1

    Congruence of CSC–TPC markers in the purification by cell sorting of CSC–TPC from tumors.

  2. 2

    Congruence of immunohistochemical markers of CSC–TPC in tumors.

  3. 3

    Congruence of EMT immunohistochemical markers in tumors.

  4. 4

    Localization of embryonic SC–TPC in tumors.

  5. 5

    Localization of EMT cells in tumors and distinction between these and fibroblasts and inflammatory cells.

  6. 6

    Congruence of CSC–TPC and EMT markers in tumors.

  7. 7

    Congruence of CSC–TPC and EMT markers with markers of normal cell differentiation and proliferation.

  8. 8

    The relation of EMT cells and TPC with the metabolic geography of the tumor (for example, O2 availability).

  9. 9

    Definition of biomarkers of drug-persistent cells (drug-tolerant persisters) and slowly dividing cells (PKH), and eventual characterization of such cells in in vivo cancers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floor, S., van Staveren, W., Larsimont, D. et al. Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations. Oncogene 30, 4609–4621 (2011). https://doi.org/10.1038/onc.2011.184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.184

Keywords

This article is cited by

Search

Quick links