Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells

A Correction to this article was published on 09 December 2021

This article has been updated

Abstract

The Hedgehog signaling pathway is one of the most dysregulated pathways in human cancers. The glioma-associated oncogene homolog 1 (GLI1) transcription factor is the terminal effector of the Hedgehog pathway, frequently activated in human breast cancer and an emerging target of breast cancer therapy. While somatic mutations in the human GLI1 gene have never been reported in any cell or tumor type, we recently uncovered the existence of a novel alternatively spliced, truncated GLI1 (tGLI1) that has an in-frame deletion of 41 codons spanning the entire exon 3 and part of exon 4 of the GLI1 gene. Using glioblastoma models, we showed that tGLI1 has gained the ability to promote glioblastoma migration and invasion via its gain-of-function transcriptional activity. However, the pathological impact of tGLI1 on breast cancer remains undefined. Here, we report that tGLI1 is frequently expressed in human breast cancer cell lines and primary specimens we have examined to date, but is undetectable in normal breast tissues. We found for the first time that tGLI1, but not GLI1, binds to and enhances the human vascular endothelial growth factor-A (VEGF-A) gene promoter, leading to its upregulation. Consequently, tGLI1-expressing MDA-MB-231 breast cancer cells secret higher levels of VEGF-A and contain a higher propensity, than the isogenic cells with control vector and GLI1, to stimulate in vitro angiogenesis of human vascular endothelial cells. We further showed that tGLI1 has gained the ability to enhance the motility and invasiveness of breast cancer cells in a proliferation-independent manner and that this functional gain is associated with increased expression of migration/invasion-associated genes, CD24, MMP-2 and MMP-9. tGLI1 has also acquired the property to facilitate anchorage-independent growth of breast cancer cells. Collectively, our results define tGLI1 as a gain-of-function GLI1 transcription factor and a novel mediator of the behavior of clinically more aggressive breast cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

References

  • Ahmad A, Wang Z, Kong D, Ali S, Li Y, Banerjee S et al. (2010). FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Res Treat 122: 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Aigner S, Sthoeger ZM, Fogel M, Weber E, Zarn J, Ruppert M et al. (1997). CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood 89: 3385–3395.

    CAS  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T et al. (2005). CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65: 10783–10793.

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Zhu H, Ali-Osman F, Lo HW . (2011). EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: a potential mechanism of EGFR-driven antagonism of apoptosis. Mol Cancer 10: 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charafe-Jauffret E, Ginestier C, Birnbaum D . (2009). Breast cancer stem cells: tools and models to rely on. BMC Cancer 9: 202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A . (2007). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17: 165–172.

    Article  CAS  PubMed  Google Scholar 

  • Dahmane N, Ruiz i Altaba A . (1999). Sonic hedgehog regulates the growth and patterning of the cerebellum. Development (Cambridge, England) 126: 3089–3100.

    Google Scholar 

  • Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M et al. (2001). The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development (Cambridge, England) 128: 5201–5212.

    CAS  Google Scholar 

  • Dasari VR, Kaur K, Velpula KK, Dinh DH, Tsung AJ, Mohanam S et al. (2010). Downregulation of Focal Adhesion Kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma. Aging (Albany, NY) 2: 791–803.

    Article  CAS  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA et al. (1993). Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75: 1417–1430.

    Article  CAS  PubMed  Google Scholar 

  • Fiaschi M, Rozell B, Bergstrom A, Toftgard R . (2009). Development of mammary tumors by conditional expression of GLI1. Cancer Res 69: 4810–4817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS . (2004). Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol 1: 165–176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kameda C, Tanaka H, Yamasaki A, Nakamura M, Koga K, Sato N et al. (2009). The Hedgehog pathway is a possible therapeutic target for patients with estrogen receptor-negative breast cancer. Anticancer Res 29: 871–879.

    CAS  PubMed  Google Scholar 

  • Kao J, Salari K, Bocanegra M, Choi Y-L, Girard L, Gandhi J et al. (2009). Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery. PLoS One 4: e6146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasper M, Regl G, Frischauf AM, Aberger F . (2006). GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 42: 437–445.

    Article  CAS  PubMed  Google Scholar 

  • Kasper M, Jaks V, Fiaschi M, Toftgard R . (2009). Hedgehog signalling in breast cancer. Carcinogenesis 30: 903–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy KM, Dewhirst MW . (2010). Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol (London, England) 6: 127–148.

    Article  CAS  Google Scholar 

  • Keysar SB, Jimeno A . (2010). More than markers: biological significance of cancer stem cell-defining molecules. Mol Cancer Ther 9: 2450–2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Kim JB, Lee KM, Shin I, Han W, Ko E et al. (2007). Isolation of CD24(high) and CD24(low/-) cells from MCF-7: CD24 expression is positively related with proliferation, adhesion and invasion in MCF-7. Cancer Lett 258: 98–108.

    Article  CAS  PubMed  Google Scholar 

  • Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O'Brien SJ et al. (1987). Identification of an amplified, highly expressed gene in a human glioma. Science (New York, NY) 236: 70–73.

    Article  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B . (1990). The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10: 634–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B et al. (1999). Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1: 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen G, Winzer KJ, Mayordomo E, Bellach J, Schluns K, Denkert C et al. (2003). CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9: 4906–4913.

    CAS  PubMed  Google Scholar 

  • Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A et al. (2005). Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11: 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  • Lawson ND, Vogel AM, Weinstein BM . (2002). Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3: 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim SH, Lee ES, Kim YS . (2009). CD24 overexpression in cancer development and progression: a meta-analysis. Oncol Rep 22: 1149–1156.

    CAS  PubMed  Google Scholar 

  • Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. (2007). Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66: 6063–6071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wicha MS . (2010). Targeting breast cancer stem cells. J Clin Oncol 28: 4006–4012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo HW, Cao X, Zhu H, Ali-Osman F . (2008a). Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 14: 6042–6054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo HW, Cao X, Zhu H, Ali-Osman F . (2010). Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol Cancer Res 8: 232–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo H-W, Hsu S-C, Ali-Seyed M, Gunduz M, Xia W, Wei Y et al. (2005). Nuclear interaction of EGFR and STAT3 in the activation of iNOS/NO pathway. Cancer Cell 7: 575–589.

    Article  CAS  PubMed  Google Scholar 

  • Lo H-W, Hsu S-C, Xia W, Cao X, Shih J-Y, Wei Y et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67: 9066–9076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo HW, Stephenson L, Cao X, Milas M, Pollock R, Ali-Osman F . (2008b). Identification and functional characterization of the human glutathione S-transferase P1 gene as a novel transcriptional target of the p53 tumor suppressor gene. Mol Cancer Res 6: 843–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo HW, Zhu H, Cao X, Aldrich A, Ali-Osman F . (2009). A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res 69: 6790–6798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK . (2010). CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 70: 4624–4633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Frolova N, Sadlonova A, Novak Z, Steg A, Page GP et al. (2006). Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther 5: 674–683.

    Article  CAS  PubMed  Google Scholar 

  • Nagase T, Nagase M, Machida M, Fujita T . (2008). Hedgehog signalling in vascular development. Angiogenesis 11: 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Rao G, Pedone CA, Del Valle L, Reiss K, Holland EC, Fults DW . (2004). Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23: 6156–6162.

    Article  CAS  PubMed  Google Scholar 

  • Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A et al. (1994). Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76: 761–775.

    Article  CAS  PubMed  Google Scholar 

  • Runz S, Mierke CT, Joumaa S, Behrens J, Fabry B, Altevogt P . (2008). CD24 induces localization of beta1 integrin to lipid raft domains. Biochem Biophys Res Commun 365: 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Hui C, Nakafuku M, Kondoh H . (1997). A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development (Cambridge, England) 124: 1313–1322.

    CAS  Google Scholar 

  • Schmidt M, Voelker HU, Kapp M, Dietl J, Kammerer U . (2008). Expression of VEGFR-1 (Flt-1) in breast cancer is associated with VEGF expression and with node-negative tumour stage. Anticancer Res 28: 1719–1724.

    CAS  PubMed  Google Scholar 

  • Shimokawa T, Tostar U, Lauth M, Palaniswamy R, Kasper M, Toftgard R et al. (2008). Novel human glioma-associated oncogene 1 (GLI1) splice variants reveal distinct mechanisms in the terminal transduction of the hedgehog signal. J Biol Chem 283: 14345–14354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ten Haaf A, Bektas N, von Serenyi S, Losen I, Arweiler EC, Hartmann A et al. (2009). Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer 9: 298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Timoshenko AV, Chakraborty C, Wagner GF, Lala PK . (2006). COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer 94: 1154–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlodavsky I, Goldshmidt O, Zcharia E, Atzmon R, Rangini-Guatta Z, Elkin M et al. (2002). Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol 12: 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Vreys V, David G . (2007). Mammalian heparanase: what is the message? J Cell Mol Med 11: 427–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Xie G, Fan Q, Xie J . (2010). Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 29: 469–481.

    Article  PubMed  Google Scholar 

  • Zhu H, Cao X, Ali-Osman F, Keir S, Lo HW . (2010). EGFR and EGFRvIII interact with PUMA to inhibit mitochondrial translocalization of PUMA and PUMA-mediated apoptosis independent of EGFR kinase activity. Cancer Lett 294: 101–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Lo H-W . (2010). The human glioma-associated oncogene homolog 1 (GLI1) family of transcription factors in gene regulation and diseases. Curr Genomics 11: 238–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the NIH grant K01-CA118423, DOD grant W81XWH-07-1-0390, the Pediatric Brain Tumor Foundation and the Beez Foundation and the Intramural Division of Surgical Sciences Dani P. Bolognesi, PhD Award (to H-WL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-W Lo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Geradts, J., Dewhirst, M. et al. Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene 31, 104–115 (2012). https://doi.org/10.1038/onc.2011.219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.219

Keywords

This article is cited by

Search

Quick links