Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MYCN sensitizes neuroblastoma to the MDM2-p53 antagonists Nutlin-3 and MI-63

Abstract

MYCN amplification is a major biomarker of poor prognosis, occurring in 25–30% of neuroblastomas. MYCN has contradictory roles in promoting cell growth and sensitizing cells to apoptosis. We have recently shown that p53 is a direct transcriptional target of MYCN in neuroblastoma and that p53-mediated apoptosis may be an important mechanism of MYCN-induced apoptosis. Although p53 mutations are rare in neuroblastoma at diagnosis, the p53/MDM2/p14ARF pathway is often inactivated through MDM2 amplification or p14ARF inactivation. We hypothesized that reactivation of p53 by inhibition of its negative regulator MDM2, using the MDM2-p53 antagonists Nutlin-3 and MI-63, will result in p53-mediated growth arrest and apoptosis especially in MYCN-amplified cells. Using the SHEP Tet21N MYCN-regulatable system, MYCN(−) cells were more resistant to both Nutlin-3 and MI-63 mediated growth inhibition and apoptosis compared with MYCN(+) cells and siRNA-mediated knockdown of MYCN in four MYCN-amplified cell lines resulted in decreased p53 expression and activation, as well as decreased levels of apoptosis following treatment with MDM2-p53 antagonists. In a panel of 18 neuroblastoma cell lines treated with Nutlin-3 and MI-63, the subset amplified for MYCN had a significantly lower mean GI50 value (50% growth inhibition) and increased caspase 3/7 activity compared with the non-MYCN-amplified group of cell lines, but p53 mutant cell lines were resistant to the antagonists regardless of MYCN status. We conclude that amplification or overexpression of MYCN sensitizes neuroblastoma cell lines with wild-type p53 to MDM2-p53 antagonists and that these compounds may therefore be particularly effective in treating high-risk MYCN-amplified disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alt JR, Greiner TC, Cleveland JL, Eischen CM . (2003). Mdm2 haplo-insufficiency profoundly inhibits Myc-induced lymphomagenesis. Embo J 22: 1442–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amente S, Gargano B, Diolaiti D, Della Valle G, Lania L, Majello B . (2007). p14ARF interacts with N-Myc and inhibits its transcriptional activity. FEBS Lett 581: 821–825.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri E, Mehta P, Chen Z, Zhang L, Slack A, Berg S et al. (2006). MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol Cancer Ther 5: 2358–2365.

    Article  CAS  PubMed  Google Scholar 

  • Bell E, Premkumar R, Carr J, Lu X, Lovat PE, Kees UR et al. (2006). The role of MYCN in the failure of MYCN amplified neuroblastoma cell lines to G1 arrest after DNA damage. Cell Cycle 5: 2639–2647.

    Article  CAS  PubMed  Google Scholar 

  • Canner JA, Sobo M, Ball S, Hutzen B, DeAngelis S, Willis W et al. (2009). MI-63: a novel small-molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53. Br J Cancer 101: 774–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr-Wilkinson J, O'Toole K, Wood KM, Challen CC, Baker AG, Board JR et al. (2010). High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma. Clin Cancer Res 16: 1108–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr J, Bell E, Pearson AD, Kees UR, Beris H, Lunec J et al. (2006). Increased frequency of aberrations in the p53/MDM2/p14(ARF) pathway in neuroblastoma cell lines established at relapse. Cancer Res 66: 2138–2145.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Iraci N, Gherardi S, Gamble LD, Wood KM, Perini G et al. (2010). p53 is a direct transcriptional target of MYCN in neuroblastoma. Cancer Res 70: 1377–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Lin Y, Barbieri E, Burlingame S, Hicks J, Ludwig A et al. (2009). Mdm2 deficiency suppresses MYCN-Driven neuroblastoma tumorigenesis in vivo. Neoplasia 11: 753–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chipuk JE, Green DR . (2006). Dissecting p53-dependent apoptosis. Cell Death Differ 13: 994–1002.

    Article  CAS  PubMed  Google Scholar 

  • Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM et al. (2009). The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27: 289–297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohn SL, Tweddle DA . (2004). MYCN amplification remains prognostically strong 20 years after its ‘clinical debut’. Eur J Cancer 40: 2639–2642.

    Article  CAS  PubMed  Google Scholar 

  • Corvi R, Savelyeva L, Breit S, Wenzel A, Handgretinger R, Barak J et al. (1995). Non-syntenic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene 10: 1081–1086.

    CAS  PubMed  Google Scholar 

  • Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV . (2010). Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci USA 107: 9660–9664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efeyan A, Ortega-Molina A, Velasco-Miguel S, Herranz D, Vassilev LT, Serrano M . (2007). Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res 67: 7350–7357.

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Lutz W, Schwab M, Debatin KM . (2000). MycN sensitizes neuroblastoma cells for drug-triggered apoptosis. Med Pediatr Oncol 35: 582–584.

    Article  CAS  PubMed  Google Scholar 

  • Goldman SC, Chen CY, Lansing TJ, Gilmer TM, Kastan MB . (1996). The p53 signal transduction pathway is intact in human neuroblastoma despite cytoplasmic localization. Am J Pathol 148: 1381–1385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogarty MD . (2003). The requirement for evasion of programmed cell death in neuroblastomas with MYCN amplification. Cancer Lett 197: 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Hosoi G, Hara J, Okamura T, Osugi Y, Ishihara S, Fukuzawa M et al. (1994). Low frequency of the p53 gene mutations in neuroblastoma. Cancer 73: 3087–3093.

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Rychahou PG, Ishola TA, Qiao J, Evers BM, Chung DH . (2006). MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells. Biochem Biophys Res Commun 351: 192–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T et al. (2005). MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 106: 3150–3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV . (2010). The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY) 2: 344–352.

    Article  CAS  Google Scholar 

  • Lutz W, Stohr M, Schurmann J, Wenzel A, Lohr A, Schwab M . (1996). Conditional expression of N-myc in human neuroblastoma cells increases expression of alpha-prothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells. Oncogene 13: 803–812.

    CAS  PubMed  Google Scholar 

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL . (2007). Neuroblastoma. Lancet 369: 2106–2120.

    Article  CAS  PubMed  Google Scholar 

  • Maris JM, Matthay KK . (1999). Molecular biology of neuroblastoma. J Clin Oncol 17: 2264–2279.

    Article  CAS  PubMed  Google Scholar 

  • Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK et al. (1999). Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med 341: 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  • Michalak E, Villunger A, Erlacher M, Strasser A . (2005). Death squads enlisted by the tumour suppressor p53. Biochem Biophys Res Commun 331: 786–798.

    Article  CAS  PubMed  Google Scholar 

  • Muller CR, Paulsen EB, Noordhuis P, Pedeutour F, Saeter G, Myklebost O . (2007). Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A. Int J Cancer 121: 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Petroni M, Veschi V, Prodosmo A, Rinaldo C, Massimi I, Carbonari M et al. (2011). MYCN sensitizes human neuroblastoma to apoptosis by HIPK2 activation through a DNA damage response. Mol Cancer Res 9: 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82: 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  • Slack A, Chen Z, Tonelli R, Pule M, Hunt L, Pession A et al. (2005). The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci USA 102: 731–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slack A, Shohet JM . (2005). MDM2 as a critical effector of the MYCN oncogene in tumorigenesis. Cell Cycle 4: 857–860.

    Article  CAS  PubMed  Google Scholar 

  • Tweddle DA, Malcolm AJ, Cole M, Pearson AD, Lunec J . (2001). p53 cellular localization and function in neuroblastoma: evidence for defective G(1) arrest despite WAF1 induction in MYCN-amplified cells. Am J Pathol 158: 2067–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tweddle DA, Pearson AD, Haber M, Norris MD, Xue C, Flemming C et al. (2003). The p53 pathway and its inactivation in neuroblastoma. Cancer Lett 197: 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Van Maerken T, Rihani A, Dreidax D, De Clercq S, Yigit N, Marine JC et al. (2011). Functional analysis of the p53 pathway in neuroblastoma cells using the small-molecule MDM2 antagonist nutlin-3. Mol Cancer Ther 10: 983–993.

    Article  CAS  PubMed  Google Scholar 

  • Van Maerken T, Speleman F, Vermeulen J, Lambertz I, De Clercq S, De Smet E et al. (2006). Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res 66: 9646–9655.

    Article  CAS  PubMed  Google Scholar 

  • van Noesel MM, Pieters R, Voute PA, Versteeg R . (2003). The N-myc paradox: N-myc overexpression in neuroblastomas is associated with sensitivity as well as resistance to apoptosis. Cancer Lett 197: 165–172.

    Article  CAS  PubMed  Google Scholar 

  • van Noesel MM, Versteeg R . (2004). Pediatric neuroblastomas: genetic and epigenetic ‘danse macabre’. Gene 325: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  • Vogan K, Bernstein M, Leclerc JM, Brisson L, Brossard J, Brodeur GM et al. (1993). Absence of p53 gene mutations in primary neuroblastomas. Cancer Res 53: 5269–5273.

    CAS  PubMed  Google Scholar 

  • Wang P, Greiner TC, Lushnikova T, Eischen CM . (2006). Decreased Mdm2 expression inhibits tumor development induced by loss of ARF. Oncogene 25: 3708–3718.

    Article  CAS  PubMed  Google Scholar 

  • Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM . (1997). Targeted expression of MYCN causes neuroblastoma in transgenic mice. Embo J 16: 2985–2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel A, Cziepluch C, Hamann U, Schurmann J, Schwab M . (1991). The N-Myc oncoprotein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells. Embo J 10: 3703–3712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the following for cell lines: Sue Cohn (NBLW and NBLS), Linda Harris (SJNB1), Penny Lovat (SHSY5Y, SHEP and IMR32), John Maris (NB69), Patrick Reynolds (SKNRA, SMSKCNR, LAN5, LAN6 and CHLA136), Manfred Schwab (LS and SHEP Tet21N), Rogier Versteeg (NGP), Barbara Spengler (SKNBe2C), Micro Ponzoni (GIMEN), Ursula Kees (PER108), Maria Lastowska (TR14), Clinton Stewart (NB1691) and Jean Bénard (SKNAS, IGRN91). We are grateful to Mike Cole (Newcastle Cancer Centre, Newcastle University) for his statistical advice and to Cancer Research UK for funding this work. This study is supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Lunec.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website ()

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamble, L., Kees, U., Tweddle, D. et al. MYCN sensitizes neuroblastoma to the MDM2-p53 antagonists Nutlin-3 and MI-63. Oncogene 31, 752–763 (2012). https://doi.org/10.1038/onc.2011.270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.270

Keywords

This article is cited by

Search

Quick links