Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

E-cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via β-catenin-Egr1-mediated PTEN expression

Abstract

E-cadherin is a cell–cell adhesion protein and tumor suppressor that is silenced in many malignancies. E-cadherin is thought to suppress tumor cell growth by antagonizing β-catenin signaling. However, the role of E-cadherin in ovarian cancer progression is still controversial. In this study, we showed that loss of E-cadherin induced ovarian cancer cell growth and constitutive activation of phosphoinositide 3-kinase (PI3K)/Akt signaling by the inhibition of phosphatase and tensin homolog (PTEN) transcription through the downregulation of early growth response gene 1 (Egr1). In addition, immunofluorescence microscopy and T-cell factor promoter/luciferase reporter assays showed that E-cadherin loss was associated with enhanced nuclear β-catenin signaling. Constitutive activation of PI3K/Akt signaling reinforced nuclear β-catenin signaling by inactivating glycogen synthase kinase-3β indicating cross-talk between the PI3K/Akt and β-catenin signaling pathways. Finally, we found that E-cadherin negatively regulates tumor cell growth, in part, by positively regulating PTEN expression via β-catenin-mediated Egr1 regulation, thus influencing PI3K/Akt signaling. In summary, endogenous E-cadherin inhibits PI3K/Akt signaling by antagonizing β-catenin-Egr1-mediated repression of PTEN expression. Thus, the loss of E-cadherin itself may contribute to dysregulated PI3K/Akt signaling through its effects on PTEN, or it may exacerbate the frequent activation of PI3K/Akt signaling that occurs as a result of overexpression, mutation and/or amplification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bast Jr RC, Hennessy B, Mills GB . (2009). The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9: 415–428.

    Article  CAS  Google Scholar 

  • Black PC, Brown GA, Inamoto T, Shrader M, Arora A, Siefker-Radtke AO et al. (2008). Sensitivity to epidermal growth factor receptor inhibitor requires E-cadherin expression in urothelial carcinoma cells. Clin Cancer Res 14: 1478–1486.

    Article  CAS  Google Scholar 

  • Blanco-Aparicio C, Renner O, Leal JF, Carnero A . (2007). PTEN, more than the AKT pathway. Carcinogenesis 28: 1379–1386.

    Article  CAS  Google Scholar 

  • Brugge J, Hung MC, Mills GB . (2007). A new mutational AKTivation in the PI3K pathway. Cancer Cell 12: 104–107.

    Article  CAS  Google Scholar 

  • Chalhoub N, Baker SJ . (2009). PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4: 127–150.

    Article  CAS  Google Scholar 

  • Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A. . (2003). Autoregulation of E-cadherin expression by cadherin–cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol 163: 847–857.

    Article  CAS  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.

    Article  CAS  Google Scholar 

  • De Santis G, Miotti S, Mazzi M, Canevari S, Tomassetti A . (2009). E-cadherin directly contributes to PI3K/AKT activation by engaging the PI3K-p85 regulatory subunit to adherens junctions of ovarian carcinoma cells. Oncogene 28: 1206–1217.

    Article  CAS  Google Scholar 

  • Eldar-Finkelman H, Argast GM, Foord O, Fischer EH, Krebs EG . (1996). Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells. Proc Natl Acad Sci USA 93: 10228–10233.

    Article  CAS  Google Scholar 

  • Fournier MV, Fata JE, Martin KJ, Yaswen P, Bissell MJ . (2009). Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells. Cancer Res 69: 4545–4552.

    Article  CAS  Google Scholar 

  • Friedl P, Gilmour D . (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10: 445–457.

    Article  CAS  Google Scholar 

  • Furnari FB, Huang HJ, Cavenee WK . (1998). The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res 58: 5002–5008.

    CAS  PubMed  Google Scholar 

  • Geiger B, Yehuda-Levenberg S, Bershadsky AD . (1995). Molecular interactions in the submembrane plaque of cell–cell and cell–matrix adhesions. Acta Anat (Basel) 154: 46–62.

    Article  CAS  Google Scholar 

  • Gottardi CJ, Wong E, Gumbiner BM . (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol 153: 1049–1060.

    Article  CAS  Google Scholar 

  • Hu Y, Li Z, Guo L, Wang L, Zhang L, Cai X et al. (2007). MAGI-2 Inhibits cell migration and proliferation via PTEN in human hepatocarcinoma cells. Arch Biochem Biophys 467: 1–9.

    Article  CAS  Google Scholar 

  • Kemler R . (1993). From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9: 317–321.

    Article  CAS  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van WD, de WR, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275: 1784–1787.

    Article  CAS  Google Scholar 

  • Kowalski PJ, Rubin MA, Kleer CG . (2003). E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5: R217–R222.

    Article  CAS  Google Scholar 

  • Li DM, Sun H . (1998). PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA 95: 15406–15411.

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Zhang W, Fu Y, Zhao H, Hu Y et al. (2007). Restoring E-cadherin-mediated cell–cell adhesion increases PTEN protein level and stability in human breast carcinoma cells. Biochem Biophys Res Commun 363: 165–170.

    Article  CAS  Google Scholar 

  • Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y et al. (2000). Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA 97: 4262–4266.

    Article  CAS  Google Scholar 

  • Maher MT, Flozak AS, Stocker AM, Chenn A, Gottardi CJ . (2009). Activity of the [beta]-catenin phosphodestruction complex at cell–cell contacts is enhanced by cadherin-based adhesion. J Cell Biol 186: 219–228.

    Article  CAS  Google Scholar 

  • Morin PJ . (1999). Beta-catenin signaling and cancer. Bioessays 21: 1021–1030.

    Article  CAS  Google Scholar 

  • Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA et al. (1998). The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci USA 95: 13513–13518.

    Article  CAS  Google Scholar 

  • Nollet F, Berx G, van RF . (1999). The role of the E-cadherin/catenin adhesion complex in the development and progression of cancer. Mol Cell Biol Res Commun 2: 77–85.

    Article  CAS  Google Scholar 

  • Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA . (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68: 3645–3654.

    Article  CAS  Google Scholar 

  • Persad S, Troussard AA, McPhee TR, Mulholland DJ, Dedhar S . (2001). Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J Cell Biol 153: 1161–1174.

    Article  CAS  Google Scholar 

  • Polakis P . (1999). The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9: 15–21.

    Article  CAS  Google Scholar 

  • Radu A, Neubauer V, Akagi T, Hanafusa H, Georgescu MM . (2003). PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 23: 6139–6149.

    Article  CAS  Google Scholar 

  • Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM et al. (1999). Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 96: 2110–2115.

    Article  CAS  Google Scholar 

  • Reddy P, Liu L, Ren C, Lindgren P, Boman K, Shen Y et al. (2005). Formation of E-cadherin-mediated cell-cell adhesion activates AKT and mitogen activated protein kinase via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor receptor in ovarian cancer cells. Mol Endocrinol 19: 2564–2578.

    Article  CAS  Google Scholar 

  • Sasaki CY, Lin H, Passaniti A . (2000). Expression of E-cadherin reduces bcl-2 expression and increases sensitivity to etoposide-induced apoptosis. Int J Cancer 86: 660–666.

    Article  CAS  Google Scholar 

  • Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res 68: 2329–2339.

    Article  CAS  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522–5527.

    Article  CAS  Google Scholar 

  • Soto E, Yanagisawa M, Marlow LA, Copland JA, Perez EA, Anastasiadis PZ . (2008). p120 catenin induces opposing effects on tumor cell growth depending on E-cadherin expression. J Cell Biol 183: 737–749.

    Article  CAS  Google Scholar 

  • St Croix B, Sheehan C, Rak JW, Florenes VA, Slingerland JM, Kerbel RS . (1998). E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27(KIP1). J Cell Biol 142: 557–571.

    Article  CAS  Google Scholar 

  • Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y et al. (2001). Regulation of PTEN transcription by p53. Mol Cell 8: 317–325.

    Article  CAS  Google Scholar 

  • Stambolic V, Woodgett JR . (1994). Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303 (Part 3): 701–704.

    Article  CAS  Google Scholar 

  • Stockinger A, Eger A, Wolf J, Beug H, Foisner R . (2001). E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. J Cell Biol 154: 1185–1196.

    Article  CAS  Google Scholar 

  • Subauste MC, Nalbant P, Adamson ED, Hahn KM . (2005). Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. J Biol Chem 280: 5676–5681.

    Article  CAS  Google Scholar 

  • Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J et al. (1999). PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 96: 6199–6204.

    Article  CAS  Google Scholar 

  • van Noort M, Clevers H . (2002). TCF transcription factors, mediators of Wnt-signaling in development and cancer. Dev Biol 244: 1–8.

    Article  CAS  Google Scholar 

  • Veatch AL, Carson LF, Ramakrishnan S . (1994). Differential expression of the cell–cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int J Cancer 58: 393–399.

    Article  CAS  Google Scholar 

  • Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T et al. (2001). The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 3: 1124–1128.

    Article  CAS  Google Scholar 

  • Weng L, Brown J, Eng C . (2001). PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and -independent pathways. Hum Mol Genet 10: 237–242.

    Article  CAS  Google Scholar 

  • Weng LP, Smith WM, Dahia PL, Ziebold U, Gil E, Lees JA et al. (1999). PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res 59: 5808–5814.

    CAS  PubMed  Google Scholar 

  • Weng Z, Xin M, Pablo L, Grueneberg D, Hagel M, Bain G et al. (2002). Protection against anoikis and down-regulation of cadherin expression by a regulatable beta-catenin protein. J Biol Chem 277: 18677–18686.

    Article  CAS  Google Scholar 

  • Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L et al. (2006). Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66: 944–950.

    Article  CAS  Google Scholar 

  • Woenckhaus J, Steger K, Sturm K, Munstedt K, Franke FE, Fenic I . (2007). Prognostic value of PIK3CA and phosphorylated AKT expression in ovarian cancer. Virchows Arch 450: 387–395.

    Article  CAS  Google Scholar 

  • Wong AS, Gumbiner BM . (2003). Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol 161: 1191–1203.

    Article  CAS  Google Scholar 

  • Wu C, Cipollone J, Maines-Bandiera S, Tan C, Karsan A, Auersperg N et al. (2008). The morphogenic function of E-cadherin-mediated adherens junctions in epithelial ovarian carcinoma formation and progression. Differentiation 76: 193–205.

    Article  CAS  Google Scholar 

  • Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A et al. (2007). Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell 11: 321–333.

    Article  CAS  Google Scholar 

  • Xia D, Srinivas H, Ahn YH, Sethi G, Sheng X, Yung WK et al. (2007). Mitogen-activated protein kinase kinase-4 promotes cell survival by decreasing PTEN expression through an NF kappa B-dependent pathway. J Biol Chem 282: 3507–3519.

    Article  CAS  Google Scholar 

  • Yagi T, Takeichi M . (2000). Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 14: 1169–1180.

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Anastasiadis PZ . (2006). p120 catenin is essential for mesenchymal cadherin-mediated regulation of cell motility and invasiveness. J Cell Biol 174: 1087–1096.

    Article  CAS  Google Scholar 

  • Yap AS . (1998). The morphogenetic role of cadherin cell adhesion molecules in human cancer: a thematic review. Cancer Invest 16: 252–261.

    Article  CAS  Google Scholar 

  • Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W, Fu L et al. (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11: 8686–8698.

    Article  CAS  Google Scholar 

  • Yuecheng Y, Hongmei L, Xiaoyan X . (2006). Clinical evaluation of E-cadherin expression and its regulation mechanism in epithelial ovarian cancer. Clin Exp Metastasis 23: 65–74.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr H Clevers (University Hospital, the Netherlands), Dr E Fearon (University of Michigan School of Medicine, Detroit, MI, USA), Dr A Passaniti (University of Maryland Greenebaum Cancer Center, Baltimore, MD, USA), Dr AH Ross (University of Massachusetts Medical School, Worcester, MA, USA), Dr V Stambolic (Ontario Cancer Institute, Toronto, Ontario, Canada), Dr RA Weinberg (Massachusetts Institute of Technology, Cambridge, MA, USA) and Dr J Woodgett (Ontario Cancer Institute) for kindly and generously giving us the constructs. This work was supported by the Canadian Institutes of Health Research (PCKL). PCKL is recipient of a Distinguished Scientist Award from the Child and Family Research Institute and MTL is the recipient of a Graduate Studentship Award from the Interdisciplinary Women's Reproductive Health Research Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P C K Leung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, MT., Klausen, C. & Leung, P. E-cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via β-catenin-Egr1-mediated PTEN expression. Oncogene 30, 2753–2766 (2011). https://doi.org/10.1038/onc.2011.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.6

Keywords

This article is cited by

Search

Quick links