Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Urine markers in monitoring for prostate cancer

Abstract

The major advantages of urine-based assays are their noninvasive character and ability to monitor prostate cancer with heterogeneous foci. Almost all urine-detectable prostate-specific markers have been recently reviewed. For this reason, we focus here on only a few promising markers which have been independently evaluated (in particular PCA3, fusion genes, TERT, AMACR, GSTP1, MMP9 and VEGF) and very recent ones (ANXA3 and sarcosine). The emphasis is also on multiplex biomarker analysis and on microarray-based analysis of fusion genes. A combination of multiple urine biomarkers may be valuable in the case of men with persistently elevated serum prostate-specific antigen and a history of negative biopsies. The emerging urine tests should help in both early diagnosis of prostate cancer and identifying aggressive tumors for radical treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Damber JE, Aus G . Prostate cancer. Lancet 2008; 371: 1710–1721.

    PubMed  Google Scholar 

  2. Freedland SJ, Partin AW . Prostate-specific antigen: update 2006. Urology 2006; 67: 458–460.

    PubMed  Google Scholar 

  3. Thompson IM, Ankerst DP, Chi C, Lucia MS, Goodman PJ, Crowley JJ et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA 2005; 294: 66–70.

    CAS  PubMed  Google Scholar 

  4. Schroder FH, van der Cruijsen-Koeter I, de Koning HJ, Vis AN, Hoedemaeker RF, Kranse R . Prostate cancer detection at low prostate specific antigen. J Urol 2000; 163: 806–812.

    CAS  PubMed  Google Scholar 

  5. Shariat SF, Karam JA, Margulis V, Karakiewicz PI . New blood-based biomarkers for the diagnosis, staging and prognosis of prostate cancer. BJU Int 2008; 101: 675–683.

    CAS  PubMed  Google Scholar 

  6. Djavan B, Remzi M, Schulman CC, Marberger M, Zlotta AR . Repeat prostate biopsy: who, how and when? A review. Eur Urol 2002; 42: 93–103.

    PubMed  Google Scholar 

  7. Downes MR, Byrne JC, Pennington R, Dunn MJ, Fitzpatrick JM, Watson WG . Urinary markers for prostate cancer. BJU Int 2007; 99: 263–268.

    CAS  PubMed  Google Scholar 

  8. Muller H, Brenner H . Urine markers as possible tools for prostate cancer screening: review of performance characteristics and practicality. Clin Chem 2006; 52: 562–573.

    PubMed  Google Scholar 

  9. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG et al. alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 2002; 287: 1662–1670.

    CAS  PubMed  Google Scholar 

  10. Rogers CG, Yan G, Zha S, Gonzalgo ML, Isaacs WB, Luo J et al. Prostate cancer detection on urinalysis for alpha methylacyl coenzyme a racemase protein. J Urol 2004; 172: 1501–1503.

    CAS  PubMed  Google Scholar 

  11. Zielie PJ, Mobley JA, Ebb RG, Jiang Z, Blute RD, Ho SM . A novel diagnostic test for prostate cancer emerges from the determination of alpha-methylacyl-coenzyme a racemase in prostatic secretions. J Urol 2004; 172: 1130–1133.

    CAS  PubMed  Google Scholar 

  12. Laxman B, Morris DS, Yu J, Siddiqui J, Cao J, Mehra R et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res 2008; 68: 645–649.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Goessl C, Muller M, Heicappell R, Krause H, Miller K . DNA-based detection of prostate cancer in blood, urine, and ejaculates. Ann NY Acad Sci 2001; 945: 51–58.

    CAS  PubMed  Google Scholar 

  14. Goessl C, Muller M, Heicappell R, Krause H, Straub B, Schrader M et al. DNA-based detection of prostate cancer in urine after prostatic massage. Urology 2001; 58: 335–338.

    CAS  PubMed  Google Scholar 

  15. Jeronimo C, Usadel H, Henrique R, Silva C, Oliveira J, Lopes C et al. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology 2002; 60: 1131–1135.

    PubMed  Google Scholar 

  16. Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG . Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res 2003; 9: 2673–2677.

    CAS  PubMed  Google Scholar 

  17. Crocitto LE, Korns D, Kretzner L, Shevchuk T, Blair SL, Wilson TG et al. Prostate cancer molecular markers GSTP1 and hTERT in expressed prostatic secretions as predictors of biopsy results. Urology 2004; 64: 821–825.

    PubMed  Google Scholar 

  18. Cussenot O, Teillac P, Berthon P, Latil A . Noninvasive detection of genetic instability in cells from prostatic secretion as a marker of prostate cancer. Eur J Intern Med 2001; 12: 17–19.

    CAS  PubMed  Google Scholar 

  19. Thuret R, Chantrel-Groussard K, Azzouzi AR, Villette JM, Guimard S, Teillac P et al. Clinical relevance of genetic instability in prostatic cells obtained by prostatic massage in early prostate cancer. Br J Cancer 2005; 92: 236–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moses MA, Wiederschain D, Loughlin KR, Zurakowski D, Lamb CC, Freeman MR . Increased incidence of matrix metalloproteinases in urine of cancer patients. Cancer Res 1998; 58: 1395–1399.

    CAS  PubMed  Google Scholar 

  21. Roy R, Louis G, Loughlin KR, Wiederschain D, Kilroy SM, Lamb CC et al. Tumor-specific urinary matrix metalloproteinase fingerprinting: identification of high molecular weight urinary matrix metalloproteinase species. Clin Cancer Res 2008; 14: 6610–6617.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan LW, Moses MA, Goley E, Sproull M, Muanza T, Coleman CN et al. Urinary VEGF and MMP levels as predictive markers of 1-year progression-free survival in cancer patients treated with radiation therapy: a longitudinal study of protein kinetics throughout tumor progression and therapy. J Clin Oncol 2004; 22: 499–506.

    CAS  PubMed  Google Scholar 

  23. Miyake H, Muramaki M, Kurahashi T, Yamanaka K, Hara I . Urinary levels of vascular endothelial growth factor in patients with prostate cancer as a predictor of disease progression. Anticancer Res 2005; 25: 3645–3649.

    CAS  PubMed  Google Scholar 

  24. Bok RA, Halabi S, Fei DT, Rodriquez CR, Hayes DF, Vogelzang NJ et al. Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res 2001; 61: 2533–2536.

    CAS  PubMed  Google Scholar 

  25. Meid FH, Gygi CM, Leisinger HJ, Bosman FT, Benhattar J . The use of telomerase activity for the detection of prostatic cancer cells after prostatic massage. J Urol 2001; 165: 1802–1805.

    CAS  PubMed  Google Scholar 

  26. Vicentini C, Gravina GL, Angelucci A, Pascale E, D’Ambrosio E, Muzi P et al. Detection of telomerase activity in prostate massage samples improves differentiating prostate cancer from benign prostatic hyperplasia. J Cancer Res Clin Oncol 2004; 130: 217–221.

    CAS  PubMed  Google Scholar 

  27. Botchkina GI, Kim RH, Botchkina IL, Kirshenbaum A, Frischer Z, Adler HL . Noninvasive detection of prostate cancer by quantitative analysis of telomerase activity. Clin Cancer Res 2005; 11: 3243–3249.

    CAS  PubMed  Google Scholar 

  28. Gerke V, Creutz CE, Moss SE . Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 2005; 6: 449–461.

    CAS  PubMed  Google Scholar 

  29. Pisitkun T, Shen RF, Knepper MA . Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 2004; 101: 13368–13373.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schostak M, Schwall GP, Poznanovic S, Groebe K, Muller MD, Miller K et al. Annexin A3 in urine: a highly specific noninvasive marker for prostate cancer early detection. J Urol 2009; 181: 343–353.

    CAS  PubMed  Google Scholar 

  31. Kollermann J, Schlomm T, Bang H, Schwall GP, von Eichel-Streiber C, Simon R et al. Expression and prognostic relevance of annexin a3 in prostate cancer. Eur Urol 2008; 54: 1314–1323.

    PubMed  Google Scholar 

  32. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 1999; 59: 5975–5979.

    CAS  PubMed  Google Scholar 

  33. Gandini O, Santulli M, Cardillo MR, Stigliano A, Toscano V . Correspondence re: J. B. de Kok et al., DD3, A very sensitive and specific marker to detect prostate tumors. Cancer Res., 62: 2695–2698, 2002. Cancer Res 2003; 63: 4747; author reply 4748–9.

    CAS  PubMed  Google Scholar 

  34. de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res 2002; 62: 2695–2698.

    CAS  PubMed  Google Scholar 

  35. Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ, van Balken B et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 2003; 44: 8–15; discussion 15–6.

    CAS  PubMed  Google Scholar 

  36. Tinzl M, Marberger M, Horvath S, Chypre C . DD3PCA3 RNA analysis in urine--a new perspective for detecting prostate cancer. Eur Urol 2004; 46: 182–186; discussion 187.

    CAS  PubMed  Google Scholar 

  37. van Gils MP, Cornel EB, Hessels D, Peelen WP, Witjes JA, Mulders PF et al. Molecular PCA3 diagnostics on prostatic fluid. Prostate 2007; 67: 881–887.

    CAS  PubMed  Google Scholar 

  38. Fradet Y, Saad F, Aprikian A, Dessureault J, Elhilali M, Trudel C et al. uPM3, a new molecular urine test for the detection of prostate cancer. Urology 2004; 64: 311–315; discussion 315–6.

    PubMed  Google Scholar 

  39. Malek L, Sooknanan R, Compton J . Nucleic acid sequence-based amplification (NASBA). Methods Mol Biol 1994; 28: 253–260.

    CAS  PubMed  Google Scholar 

  40. Tan W, Fang X, Li J, Liu X . Molecular beacons: a novel DNA probe for nucleic acid and protein studies. Chemistry 2000; 6: 1107–1111.

    CAS  PubMed  Google Scholar 

  41. Groskopf J, Aubin SM, Deras IL, Blase A, Bodrug S, Clark C et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem 2006; 52: 1089–1095.

    CAS  PubMed  Google Scholar 

  42. Marks LS, Fradet Y, Deras IL, Blase A, Mathis J, Aubin SM et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology 2007; 69: 532–535.

    PubMed  Google Scholar 

  43. Nakanishi H, Groskopf J, Fritsche HA, Bhadkamkar V, Blase A, Kumar SV et al. PCA3 molecular urine assay correlates with prostate cancer tumour volume: implication in selecting candidates for active surveillance. J Urol 2008; 179: 1804–1810.

    PubMed  Google Scholar 

  44. Haese A, de la Taille A, van Poppel H, Marberger M, Stenzl A, Mulders PF et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol 2008; 54: 1081–1088.

    PubMed  Google Scholar 

  45. Sokoll LJ, Ellis W, Lange P, Noteboom J, Elliott DJ, Deras IL et al. A multicenter evaluation of the PCA3 molecular urine test: pre-analytical effects, analytical performance, and diagnostic accuracy. Clin Chim Acta 2008; 389: 1–6.

    CAS  PubMed  Google Scholar 

  46. Deras IL, Aubin SM, Blase A, Day JR, Koo S, Partin AW et al. PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol 2008; 179: 1587–1592.

    PubMed  Google Scholar 

  47. Kirby RS, Fitzpatrick JM, Irani J . Prostate cancer diagnosis in the new millennium: strengths and weaknesses of prostate-specific antigen and the discovery and clinical evaluation of prostate cancer gene 3 (PCA3). BJU Int 2009; 103: 441–445.

    PubMed  Google Scholar 

  48. Prentice LM, Shadeo A, Lestou VS, Miller MA, deLeeuw RJ, Makretsov N et al. NRG1 gene rearrangements in clinical breast cancer: identification of an adjacent novel amplicon associated with poor prognosis. Oncogene 2005; 24: 7281–7289.

    CAS  PubMed  Google Scholar 

  49. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM . Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008; 8: 497–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.

    CAS  PubMed  Google Scholar 

  51. Vaarala MH, Porvari K, Kyllonen A, Lukkarinen O, Vihko P . The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer 2001; 94: 705–710.

    CAS  PubMed  Google Scholar 

  52. Afar DE, Vivanco I, Hubert RS, Kuo J, Chen E, Saffran DC et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 2001; 61: 1686–1692.

    CAS  PubMed  Google Scholar 

  53. Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE et al. TMPRSS2: ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006; 66: 3396–3400.

    CAS  PubMed  Google Scholar 

  54. Oikawa T, Yamada T . Molecular biology of the Ets family of transcription factors. Gene 2003; 303: 11–34.

    CAS  PubMed  Google Scholar 

  55. Lapointe J, Kim YH, Miller MA, Li C, Kaygusuz G, van de Rijn M et al. A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Mod Pathol 2007; 20: 467–473.

    CAS  PubMed  Google Scholar 

  56. Wang J, Cai Y, Ren C, Ittmann M . Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006; 66: 8347–8351.

    CAS  PubMed  Google Scholar 

  57. Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A et al. Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol 2007; 60: 1238–1243.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 2007; 26: 4596–4599.

    CAS  PubMed  Google Scholar 

  59. Soller MJ, Isaksson M, Elfving P, Soller W, Lundgren R, Panagopoulos I . Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. Genes Chromosomes Cancer 2006; 45: 717–719.

    CAS  PubMed  Google Scholar 

  60. Iljin K, Wolf M, Edgren H, Gupta S, Kilpinen S, Skotheim RI et al. TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res 2006; 66: 10242–10246.

    CAS  PubMed  Google Scholar 

  61. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 2006; 66: 8337–8341.

    CAS  PubMed  Google Scholar 

  62. Mehra R, Tomlins SA, Shen R, Nadeem O, Wang L, Wei JT et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol 2007; 20: 538–544.

    CAS  PubMed  Google Scholar 

  63. Mosquera JM, Perner S, Demichelis F, Kim R, Hofer MD, Mertz KD et al. Morphological features of TMPRSS2-ERG gene fusion prostate cancer. J Pathol 2007; 212: 91–101.

    PubMed  Google Scholar 

  64. Nam RK, Sugar L, Wang Z, Yang W, Kitching R, Klotz LH et al. Expression of TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol Ther 2007; 6: 40–45.

    CAS  PubMed  Google Scholar 

  65. Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 2005; 24: 3847–3852.

    CAS  PubMed  Google Scholar 

  66. Winnes M, Lissbrant E, Damber JE, Stenman G . Molecular genetic analyses of the TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. Oncol Rep 2007; 17: 1033–1036.

    CAS  PubMed  Google Scholar 

  67. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008; 10: 177–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Setlur SR, Mertz KD, Hoshida Y, Demichelis F, Lupien M, Perner S et al. Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst 2008; 100: 815–825.

    CAS  PubMed  Google Scholar 

  69. Laxman B, Tomlins SA, Mehra R, Morris DS, Wang L, Helgeson BE et al. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia 2006; 8: 885–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Landers KA, Burger MJ, Tebay MA, Purdie DM, Scells B, Samaratunga H et al. Use of multiple biomarkers for a molecular diagnosis of prostate cancer. Int J Cancer 2005; 114: 950–956.

    CAS  PubMed  Google Scholar 

  71. Schmidt U, Fuessel S, Koch R, Baretton GB, Lohse A, Tomasetti S et al. Quantitative multi-gene expression profiling of primary prostate cancer. Prostate 2006; 66: 1521–1534.

    CAS  PubMed  Google Scholar 

  72. Barry M, Perner S, Demichelis F, Rubin MA . TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology 2007; 70: 630–633.

    PubMed  Google Scholar 

  73. Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA . Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res 2007; 13: 5103–5108.

    CAS  PubMed  Google Scholar 

  74. Lu Q, Nunez E, Lin C, Christensen K, Downs T, Carson DA et al. A sensitive array-based assay for identifying multiple TMPRSS2:ERG fusion gene variants. Nucleic Acids Res 2008; 36: e130.

    PubMed  PubMed Central  Google Scholar 

  75. Skotheim RI, Thomassen GO, Eken M, Lind GE, Micci F, Ribeiro FR et al. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol Cancer 2009; 8: 5.

    PubMed  PubMed Central  Google Scholar 

  76. Cerveira N, Ribeiro FR, Peixoto A, Costa V, Henrique R, Jeronimo C et al. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia 2006; 8: 826–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J . TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res 2006; 66: 10658–10663.

    CAS  PubMed  Google Scholar 

  78. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009; 457: 910–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chiou CC, Chang PY, Chan EC, Wu TL, Tsao KC, Wu JT . Urinary 8-hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: development of an ELISA and measurement in both bladder and prostate cancers. Clin Chim Acta 2003; 334: 87–94.

    CAS  PubMed  Google Scholar 

  80. Matsuda Y, Miyashita A, Fujimoto Y, Umeda T, Akihama S . Clinical application of basic arginine amidase in human male urine. Biol Pharm Bull 1996; 19: 1083–1085.

    CAS  PubMed  Google Scholar 

  81. Smith SD, Wheeler MA, Plescia J, Colberg JW, Weiss RM, Altieri DC . Urine detection of survivin and diagnosis of bladder cancer. JAMA 2001; 285: 324–328.

    CAS  PubMed  Google Scholar 

  82. Wang H, Xi X, Kong X, Huang G, Ge G . The expression and significance of survivin mRNA in urinary bladder carcinomas. J Cancer Res Clin Oncol 2004; 130: 487–490.

    CAS  PubMed  Google Scholar 

  83. Sanchez-Carbayo M, Urrutia M, Gonzalez de Buitrago JM, Navajo JA . Evaluation of two new urinary tumor markers: bladder tumor fibronectin and cytokeratin 18 for the diagnosis of bladder cancer. Clin Cancer Res 2000; 6: 3585–3594.

    CAS  PubMed  Google Scholar 

  84. Lwaleed BA, Francis JL, Chisholm M . Urinary tissue factor levels in patients with bladder and prostate cancer. Eur J Surg Oncol 2000; 26: 44–49.

    CAS  PubMed  Google Scholar 

  85. Chopin DK, Caruelle JP, Colombel M, Palcy S, Ravery V, Caruelle D et al. Increased immunodetection of acidic fibroblast growth factor in bladder cancer, detectable in urine. J Urol 1993; 150: 1126–1130.

    CAS  PubMed  Google Scholar 

  86. Varambally S, Laxman B, Mehra R, Cao Q, Dhanasekaran SM, Tomlins SA et al. Golgi protein GOLM1 is a tissue and urine biomarker of prostate cancer. Neoplasia 2008; 10: 1285–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Stoeber K, Swinn R, Prevost AT, de Clive-Lowe P, Halsall I, Dilworth SM et al. Diagnosis of genito-urinary tract cancer by detection of minichromosome maintenance 5 protein in urine sediments. J Natl Cancer Inst 2002; 94: 1071–1079.

    CAS  PubMed  Google Scholar 

  88. Edwards JJ, Anderson NG, Tollaksen SL, von Eschenbach AC, Guevara Jr J . Proteins of human urine. II. Identification by two-dimensional electrophoresis of a new candidate marker for prostatic cancer. Clin Chem 1982; 28: 160–163.

    CAS  PubMed  Google Scholar 

  89. Teni TR, Bandivdekar AH, Sheth AR, Sheth NA . Prostatic inhibin-like peptide quantified in urine of prostatic cancer patients by enzyme-linked immunosorbent assay. Clin Chem 1989; 35: 1376–1379.

    CAS  PubMed  Google Scholar 

  90. Rehman I, Azzouzi AR, Catto JW, Allen S, Cross SS, Feeley K et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a pilot study. Urology 2004; 64: 1238–1243.

    CAS  PubMed  Google Scholar 

  91. Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 2008; 13: 519–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lombardo ME, Hudson PB . Preliminary evaluation of 5 alpha-reductase type 2 in urine as a potential marker for prostate disease. Steroids 1997; 62: 682–685.

    CAS  PubMed  Google Scholar 

  93. van Dieijen-Visser MP, Hendriks MW, Delaere KP, Gijzen AH, Brombacher PJ . The diagnostic value of urinary transferrin compared to serum prostatic specific antigen (PSA) and prostatic acid phosphatase (PAP) in patients with prostatic cancer. Clin Chim Acta 1988; 177: 77–80.

    CAS  PubMed  Google Scholar 

  94. Garraway IP, Seligson D, Said J, Horvath S, Reiter RE . Trefoil factor 3 is overexpressed in human prostate cancer. Prostate 2004; 61: 209–214.

    CAS  PubMed  Google Scholar 

  95. Hutchinson LM, Chang EL, Becker CM, Shih MC, Brice M, DeWolf WC et al. Use of thymosin beta15 as a urinary biomarker in human prostate cancer. Prostate 2005; 64: 116–127.

    CAS  PubMed  Google Scholar 

  96. Irani J, Salomon L, Soulie M, Zlotta A, de la Taille A, Dore B et al. Urinary/serum prostate-specific antigen ratio: comparison with free/total serum prostate-specific antigen ratio in improving prostate cancer detection. Urology 2005; 65: 533–537.

    PubMed  Google Scholar 

  97. Gavrilov D, Kenzior O, Evans M, Calaluce R, Folk WR . Expression of urokinase plasminogen activator and receptor in conjunction with the ets family and AP-1 complex transcription factors in high grade prostate cancers. Eur J Cancer 2001; 37: 1033–1040.

    CAS  PubMed  Google Scholar 

  98. Rickman DS, Pflueger D, Moss B, VanDoren VE, Chen CX, de la Taille A et al. SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res 2009; 69: 2734–2738.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 2007; 448: 595–599.

    CAS  PubMed  Google Scholar 

  100. Hermans KG, Bressers AA, van der Korput HA, Dits NF, Jenster G, Trapman J . Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res 2008; 68: 3094–3098.

    CAS  PubMed  Google Scholar 

  101. Han B, Mehra R, Dhanasekaran SM, Yu J, Menon A, Lonigro RJ et al. A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer. Cancer Res 2008; 68: 7629–7637.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res 2008; 68: 73–80.

    CAS  PubMed  Google Scholar 

  103. Gu X, Zerbini LF, Otu HH, Bhasin M, Yang Q, Joseph MG et al. Reduced PDEF expression increases invasion and expression of mesenchymal genes in prostate cancer cells. Cancer Res 2007; 67: 4219–4226.

    CAS  PubMed  Google Scholar 

  104. Alipov G, Nakayama T, Ito M, Kawai K, Naito S, Nakashima M et al. Overexpression of Ets-1 proto-oncogene in latent and clinical prostatic carcinomas. Histopathology 2005; 46: 202–208.

    CAS  PubMed  Google Scholar 

  105. Attard G, Clark J, Ambroisine L, Mills IG, Fisher G, Flohr P et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer. Br J Cancer 2008; 99: 314–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Clarke RA, Zhao Z, Guo AY, Roper K, Teng L, Fang ZM et al. New genomic structure for prostate cancer specific gene PCA3 within BMCCI: implications for prostate cancer detection and progression. PLoS One 2009; 4: e4995.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants NS 9940-4 from the Czech Ministry of Health and MSM 6198959216 from the Czech Ministry of Education. T Jamaspishvili was also supported by GACR 303/09/H048 from the Grant Agency of the Czech Republic. While the manuscript was being reviewed, important details on PCA3 have been drawn to our attention.106 Clarke et al. have recently identified 4 new transcription start sites, 4 polyadenylation sites and 2 new differentially spliced exons in an extended form of PCA3. The expression of the two novel exons, exon 2a and 2b, which were highly enriched in CaP and metastases, can add a further degree of sensitivity for the detection of CaP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Bouchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamaspishvili, T., Kral, M., Khomeriki, I. et al. Urine markers in monitoring for prostate cancer. Prostate Cancer Prostatic Dis 13, 12–19 (2010). https://doi.org/10.1038/pcan.2009.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2009.31

Keywords

This article is cited by

Search

Quick links