Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pre-Clinical Studies

Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads

Abstract

Adult mesenchymal stem cells (MSC) that are able to differentiate into various mesenchymal cell types are typically isolated from bone marrow, but their significant presence in human peripheral blood (PB) is controversial. Fibrin microbeads (FMB) that bind matrix-dependent cells were used to isolate MSC from the mononuclear fraction of mobilized PB of adult healthy human donors treated with a granulocyte colony-stimulating factor. Isolation by plastic adherence resulted in a negligible number of MSC in all samples tested, whereas FMB-based isolation yielded spindle-shaped cell samples that could further expand on plastic or on FMB in eight out of the 11 samples. The yield of these cells at days 17–18 after the harvest was 0.5% of the initial cell number. The isolated cells were grown on plastic and characterized by FACS analysis and immunohistochemistry for specific markers. Following culturing and first passage, the FMB-isolated cells stained positive for mesenchymal stromal cell markers CD90 and CD105, expressed vimentin and fibronectin and were negative for hematopoietic markers CD45 and CD34. These cells could differentiate into osteoblasts, adipocytes and chondrocytes. This study indicates that FMB may have special advantage in isolating MSC from sources such as mobilized PB, where the number of such cells is scarce.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Fridenshtein A, Piatetzky-Shapiro I, Petrakova K . Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381–390.

    Google Scholar 

  2. Fridenshtein A . Stromal bone marrow cells and the hematopoietic microenviroment. Arkh Patol 1982; 44: 3–11.

    PubMed  Google Scholar 

  3. Caplan AI . Mesenchymal stem cell. J Orthop Res 1991; 9: 641–650.

    Article  CAS  Google Scholar 

  4. Clark B, Keating A . Biology of bone marrow stroma. Ann NY Acad Sci 1995; 770: 70–78.

    Article  CAS  Google Scholar 

  5. Pittenger M, Mackay A, Beck SC, Jaiswal R, Douglas R, Moorman M et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  Google Scholar 

  6. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211–228.

    Article  CAS  Google Scholar 

  7. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279–4295.

    Article  CAS  Google Scholar 

  8. Campagnoli C, Roberts I, Kumar S, Bennett P, Bellantuono I, Fisk NM . Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98: 2396–2402.

    Article  CAS  Google Scholar 

  9. Hu Y, Liao L, Wang Q, Ma L, Ma G, Jiang X et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 2003; 141: 342–349.

    Article  CAS  Google Scholar 

  10. Erices A, Conget P, Minguell J . Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109: 235–242.

    Article  CAS  Google Scholar 

  11. Romanov Y, Svintsitskaya V, Smirnov V . Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21: 105–110.

    Article  Google Scholar 

  12. Gang EJ, Hong SH, Jeong JA, Hwang SH, Kim SW, Yang IH et al. In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 2004; 321: 102–108.

    Article  CAS  Google Scholar 

  13. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM . Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121: 368–374.

    Article  Google Scholar 

  14. Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F . Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 2001; 86: 1099–1100.

    CAS  PubMed  Google Scholar 

  15. Lapidot T, Petit I . Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30: 973–981.

    Article  CAS  Google Scholar 

  16. Fernandez M, Simon V, Herrera G, Cao C, Del Favero H, Minguell JJ . Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant 1997; 20: 265–271.

    Article  CAS  Google Scholar 

  17. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG . Circulating skeletal stem cells. J Cell Biol 2001; 153: 1133–1140.

    Article  CAS  Google Scholar 

  18. Huss R, Lange C, Weissinger EM, Kolb HJ, Thalmeier K . Evidence of peripheral blood-derived, plastic-adherent CD34(−/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells 2000; 18: 252–260.

    Article  CAS  Google Scholar 

  19. Wu GD, Nolta JA, Jin YS, Barr ML, Yu H, Starnes VA et al. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation 2003; 75: 679–685.

    Article  Google Scholar 

  20. Ojeda-Uribe M, Brunot A, Lenat A, Legros M . Failure to detect spindle-shaped fibroblastoid cell progenitors in PBPC collections. Acta Haematol 1993; 90: 139–143.

    Article  CAS  Google Scholar 

  21. Lazarus HM, Haynesworth SE, Gerson SL, Caplan AI . Human bone marrow-derived mesenchymal stromal (progenitor cells MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 1997; 6: 447–455.

    Article  CAS  Google Scholar 

  22. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2000; 2: 477–488.

    Article  CAS  Google Scholar 

  23. Forsyth CB, Solovjov DA, Ugarova TP, Plow EF . Integrin αMβ(2)-mediated cell migration to fibrinogen and its recognition peptides. J Exp Med 2001; 193: 1123–1133.

    Article  CAS  Google Scholar 

  24. Gorodetsky R, Vexler A, An J, Mou X, Marx G . Haptotactic and growth stimulatory effects of fibrin(ogen) and thrombin on cultured fibroblasts. J Lab Clin Med 1998; 131: 269–280.

    Article  CAS  Google Scholar 

  25. Gorodetsky R, Vexler A, Levdansky L, Marx G . Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound healing. Methods Med Biol 2004; 238: 11–24.

    CAS  Google Scholar 

  26. Zangi L, Rivkin R, Kassis I, Samuel S, Levdansky L, Marx G et al. High yield isolation, expansion and differentiation of rat bone-marrow-derived mesenchymal stem-cells with fibrin-microbeads (FMB). Tissue Engineering 2006 (in press).

  27. Gurevich O, Vexler A, Marx G, Prigozhina T, Levdansky L, Slavin S et al. Fibrin microbeads for isolating and growing bone marrow-derived progenitor cells capable of forming bone tissue. Tissue Eng 2002; 8: 661–672.

    Article  CAS  Google Scholar 

  28. Gorodetsky R, Clark R, An J, Gailit J, Levdansky L, Vexler A et al. Fibrin microbeads (FMB) as biodegradable barriers for culturing cell and for accelerating wound healing. J Invest Dermatol 1999; 112: 866–872.

    Article  CAS  Google Scholar 

  29. Naito M, Funaki C, Hayashi T, Yamada K, Asai K, Yoshimine N et al. Substrate-bound fibrinogen, fibrin and other cell attachment-promoting proteins as a scaffold for cultured vascular smooth muscle cell. Atherosclerosis 1992; 96: 227–234.

    Article  CAS  Google Scholar 

  30. Fang H, Peng S, Chen A, Li F, Ren K, Hu N . Biocompatibility studies on fibrin glue cultured with bone marrow mesenchymal stem cells in vitro. J Huazhong Univ Sci Technol Med Sci 2004; 24: 272–274.

    Article  CAS  Google Scholar 

  31. Bensaid W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H . A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003; 24: 2497–2502.

    Article  CAS  Google Scholar 

  32. Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 2000; 17: 587–591.

    Article  CAS  Google Scholar 

  33. Karp JM, Sarraf F, Shoichet MS, Davies JE . Fibrin-filled scaffolds for bone-tissue engineering: an in vivo study. J Biomed Mater Res 2004; 71A: 162–171.

    Article  CAS  Google Scholar 

  34. Gorodetsky R, Vexler A, Shamir M, An J, Levdansky L, Shimeliovich I et al. New cell attachment peptide sequences from conserved epitopes in the carboxy termini of fibrinogen. Exp Cell Res 2003; 287: 116–129.

    Article  CAS  Google Scholar 

  35. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A . Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1: 71–81.

    Article  CAS  Google Scholar 

  36. Yang L, Scott PG, Giuffre J, Shankowsky HA, Ghahary A, Tredget EE . Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest 2002; 82: 1183–1192.

    Article  CAS  Google Scholar 

  37. Simmons P, Torok-Storb B . CD34 expression by stromal precursors in normal human adult bone marrow. Blood 1991; 78: 2848–2953.

    CAS  PubMed  Google Scholar 

  38. Siena S, Bregni M, Brando B, Ravagnani F, Bonadonna G, Gianni AM . Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: enhancement by intravenous recombinant human granulocyte–macrophage colony-stimulating factor. Blood 1989; 74: 1905–1914.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Anna Hotovely-Solomon, Irena Shimeliovich and Elena Gaberman for their technical help and advice. This work was partially supported by the Israel Science Foundation Grant #697/001 to RG and by HAPTO Biotech Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Gorodetsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassis, I., Zangi, L., Rivkin, R. et al. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 37, 967–976 (2006). https://doi.org/10.1038/sj.bmt.1705358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705358

Keywords

This article is cited by

Search

Quick links