Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice

Abstract

Hepatocyte growth factor (HGF) is involved in malignant behavior of cancer cells by enhancing invasion and metastasis. We earlier found that NK4, a four-kringle fragment of HGF, functions as both an HGF antagonist and an angiogenesis inhibitor. We have now carried out studies to determine if hydrodynamics-based delivery and expression of the NK4 gene would inhibit liver metastasis and invasive growth of colon carcinoma cells in mice. When the naked plasmid for NK4 was introduced into mice by hydrodynamics-based gene delivery, a high level of expression of NK4 was predominant in the liver. After intrasplenic inoculation of MC-38 murine colon carcinoma cells, the cells formed numerous metastatic nodules in the liver and showed invasive growth behavior. On the other hand, when mice were given the NK4 plasmid, hepatic gene expression of NK4 inhibited the liver metastasis and subsequent growth associated with a decrease in microvessel density. Likewise, intrahepatic invasion of cancer cells was inhibited by NK4 gene expression, and this anti-invasive effect was associated with in situ inhibition of c-Met receptor tyrosine phosphorylation. Moreover, NK4 gene expression prolonged survival of these mice. Taken together with the knowledge that the majority of deaths from colon cancer are due to liver metastasis, the potential therapeutic use of hepatic gene expression of NK4 for metastatic colon cancer treatment can be given consideration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Brand MI, Saclarides TJ, Dobson HD, et al. Liver resection for colorectal cancer: liver metastases in the aged. Am Surg. 2000;66:412–416.

    CAS  PubMed  Google Scholar 

  2. Stangl R, Altendorf-Hofmann A, Charnley RM, et al. Factors influencing the natural history of colorectal liver metastases. Lancet. 1994;343:1405–1410.

    Article  CAS  PubMed  Google Scholar 

  3. Sprangers MAG . Quality-of-life assessment in colorectal cancer patients: evaluation of cancer therapies. Semin Oncol. 1999;26:691–696.

    CAS  PubMed  Google Scholar 

  4. Nakamura T, Nawa K, Ichihara A . Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun. 1984;122:1450–1459.

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342:440–443.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang WG, Hiscox S, Matsumoto K, et al. Hepatocyte growth factor/scatter factor: its molecular, cellular and clinical implication in cancer. Crit Rev Oncol Hematol. 1999;29:209–248.

    Article  CAS  PubMed  Google Scholar 

  7. Furge KA, Zhang YW, Vande Woude GF . Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene. 2000;19:5582–5589.

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto K, Nakamura T . NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 2003;94:321–327.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang WG, Hiscox S, Singharo SK, et al. Induction of tyrosine phosphorylation and translocation of ezrin by hepatocyte growth factor (HGF/SF). Biochem Biophys Res Commun. 1995;217:1062–1069.

    Article  CAS  PubMed  Google Scholar 

  10. Uchiyama A, Essner R, Doi F, et al. Interleukin-4 inhibits hepatocyte growth factor-induced invasion and migration of colon carcinomas. J Cell Biochem. 1996;62:443–453.

    Article  CAS  PubMed  Google Scholar 

  11. Empereur S, Djelloul S, Di Gioia Y, et al. Progression of familial adenomatous polyposis (FAP) colonic cells after transfer of the src or polyoma middle T oncogene: cooperation between src and HGF/SF in invasion. Br J Cancer. 1997;75:241–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hiscox S, Hallett MB, Puntis MC, et al. Expression of the HGF/SF receptor, c-met, and its ligand in human colorectal cancers. Cancer Invest. 1997;15:513–521.

    Article  CAS  PubMed  Google Scholar 

  13. Di Renzo MF, Olivero M, Giacomini A, et al. Overexpression and amplification of the Met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res. 1995;1:147–154.

    CAS  PubMed  Google Scholar 

  14. Date K, Matsumoto K, Shimura H, et al. HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett. 1997;420:1–6.

    Article  CAS  PubMed  Google Scholar 

  15. Date K, Matsumoto K, Kuba K, et al. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene. 1998;17:3045–3054.

    Article  CAS  PubMed  Google Scholar 

  16. Parr C, Hiscox S, Nakamura T, et al. NK4, a new HGF/SF variant, is an antagonist to the influence of HGF/SF on the motility and invasion of colon cancer cells. Int J Cancer. 2000;85:563–570.

    Article  CAS  PubMed  Google Scholar 

  17. Kuba K, Matsumoto K, Date K, et al. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res. 2000;60:6737–6743.

    CAS  PubMed  Google Scholar 

  18. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.

    Article  CAS  PubMed  Google Scholar 

  19. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–364.

    Article  CAS  PubMed  Google Scholar 

  20. Liu F, Song YK, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy. 1999;6:1258–1266.

    Article  CAS  PubMed  Google Scholar 

  21. Yang J, Dai C, Liu Y . Systemic administration of naked plasmid encoding hepatocyte growth factor ameliorates chronic renal fibrosis in mice. Gene Therapy. 2001;8:1470–1479.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang J, Yamato E, Miyazaki J . Intravenous delivery of naked plasmid DNA for in vivo cytokine expression. Biochem Biophys Res Commun. 2001;289:1088–1092.

    Article  CAS  PubMed  Google Scholar 

  23. Seki T, Ihara I, Sugimura A, et al. Isolation and expression of cDNA for different forms of hepatocyte growth factor from human leukocyte. Biochem Biophys Res Commun. 1990;172:321–327.

    Article  CAS  PubMed  Google Scholar 

  24. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991;108:193–200.

    Article  CAS  PubMed  Google Scholar 

  25. Tomioka D, Maehara N, Kuba K, et al. Inhibition of growth invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res. 2001;61:7518–7524.

    CAS  PubMed  Google Scholar 

  26. Noji S, Tashiro K, Koyama E, et al. Expression of hepatocyte growth factor gene in endothelial and Kupffer cells of damaged rat livers, as revealed by in situ hybridization. Biochem Biophys Res Commun. 1990;173:42–47.

    Article  CAS  PubMed  Google Scholar 

  27. Kuba K, Matsumoto K, Ohnish K, et al. Kringle 1–4 of hepatocyte growth factor inhibits proliferation and migration of human microvascular endothelial cells. Biochem Biophys Res Commun. 2000;279:846–852.

    Article  CAS  PubMed  Google Scholar 

  28. Maemondo M, Narumi K, Saijo Y, et al. Targeting angiogenesis and HGF function using an adenoviral vector expressing the HGF antagonist NK4 for cancer therapy. Mol Ther. 2002;5:177–185.

    Article  CAS  PubMed  Google Scholar 

  29. Hirao S, Yamada Y, Koyama F, et al. Tumor suppression effect using NK4, a molecule acting as an antagonist of HGF, on human gastric carcinomas. Cancer Gene Ther. 2002;9:700–707.

    Article  CAS  PubMed  Google Scholar 

  30. Saimura M, Nagai E, Mizumoto K, et al. Intraperitoneal injection of adenovirus-mediated NK4 gene suppresses peritoneal dissemination of pancreatic cancer cell line AsPC-1 in nude mice. Cancer Gene Ther. 2002;9:799–806.

    Article  CAS  PubMed  Google Scholar 

  31. Folkman J . Angiogenesis research: from laboratory to clinic. Forum (Genova). 1999;9 (Suppl. 3):59–62.

    CAS  Google Scholar 

  32. Young SD, Marshall RS, Hill RP . Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA. 1988;85:9533–9537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cairns RA, Kalliomaki T, Hill RP . Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res. 2001;61:8903–8908.

    CAS  PubMed  Google Scholar 

  34. Rofstad EK, Rasmussen H, Galappathi K, et al. Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res. 2002;62:1847–1853.

    CAS  PubMed  Google Scholar 

  35. Höckel M, Schlenger K, Aral B, et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56:4509–4515.

    PubMed  Google Scholar 

  36. Brizel DM, Scully SP, Harreison JM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996;56:941–943.

    CAS  PubMed  Google Scholar 

  37. Sundfor K, Lyng H, Rofstad EK . Tumor hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer. 1998;78:822–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blagosklonny MV . Hypoxia-inducible factor: Achilles’ heel of antiangiogenic cancer therapy. Int J Oncol. 2001;19:257–262.

    CAS  PubMed  Google Scholar 

  39. Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3:347–361.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Technology, Sports and Culture of Japan. We thank Dr K Kuba for technical assistance with this research and M Ohara (Fukuoka, Japan) for language assistance and helpful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, J., Matsumoto, K., Taniura, N. et al. Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Ther 11, 419–430 (2004). https://doi.org/10.1038/sj.cgt.7700705

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700705

Keywords

This article is cited by

Search

Quick links