Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Th2-dominated antitumor immunity induced by DNA immunization with the genes coding for a basal core peptide PDTRP and GM-CSF

Abstract

Our previous study showed that DNA vaccination with a plasmid vector encoding a core peptide of mucin1 (PDTRP) provided modest protection against challenge with tumor cells that expressed mucin1 protein. We report here that a DNA vaccine comprising a modified PDTRP plasmid and GM-CSF coding sequence at the C-terminus induced better protection against tumor challenge. The increased protection was directly correlated with a stronger PDTRP-specific immune response induced by the GM-CSF fusion plasmid. The plasmid encoding GM-CSF and the target PDTRP antigen induced a greater PDTRP-specific Th proliferation, antibodies, and cytotoxicity. Interestingly, the modified plasmid vaccine predominantely enhanced the type 2 immune responses manifested by an increased IgG1 to IgG2a antibody ratio and a greater induction of GATA-3 and IL-4 mRNA than that of T-bet and IFN-γ mRNA in spleen cells from vaccinated mice. In addition, protection against tumor challenge in vaccinated mice showed that there was no significant change in mice survival after in vivo CD8+CTL depletion, indicating that antitumor immunity augmented by plasmid encoding GM-CSF and target PDTRP gene vaccine was dominated by Th2 immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ulmer J, Donnelly J, Parker S, Rhodes GH, Felgner PL, Dwarki VJ et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 259: 1745–1749.

    Article  CAS  PubMed  Google Scholar 

  2. Pu O-U, Hwang L-H, Tao M-H, Chiang BL, Chen DS . Co-delivery of GM-CSF gene enhances the immune responses of hepatitis C viral core protein expressing DNA vaccine: role of dendritic cells. J Med Virol 2002; 66: 320–323.

    Article  CAS  Google Scholar 

  3. Wang B, Merva M, Dang K, Ugen KE, Williams WV, Weiner DB . Immunization by direct DNA inoculation induces rejection of tumor cell challenge. Hum Gene Ther 1995; 6: 407–418.

    Article  CAS  PubMed  Google Scholar 

  4. Fynan E, Webster R, Fuller D, Haynes JR, Santoro JC, Robinson HL . DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 1993; 90: 11478–11482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ye M, Morello CS, Spector DH . Multiple epitopes in the murine cytomegalovirus early gene product M84 are efficiently presented in infected primary macrophages and contribute to strong CD8+-T-lymphocyte responses and protection following DNA immunization. J Virol 2004; 78: 11233–11245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finn JF, Jerome KR, Henderson RA, Pecher G, Domenech N, Magarian-Blander J et al. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol Rev 1995; 145: 61–89.

    Article  CAS  PubMed  Google Scholar 

  7. Barnd DL, Lan MS, Metzgar RS, Finn OJ . Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad Sci USA 1989; 86: 7159–7163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xia M-C, Lin Y, Xiong SD, Chu YW . Anti-tumor efficacy induced by antibodized PDTRP gene immunization. Chin J Cancer Biother 2004; 11: 170–174.

    Google Scholar 

  9. Dranoff F, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte macrophage-colony stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borrello I, Pardoll DM . GM-CSF-based cellular vaccines: a review of the clinical experience. Cytokine Growth Factor Rev 2002; 13: 185–193.

    Article  CAS  PubMed  Google Scholar 

  11. Pardoll DM . Paracrine cytokine adjuvants in cancer immunotherapy. Annu Rev Immunol 1995; 13: 399–415.

    Article  CAS  PubMed  Google Scholar 

  12. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte macrophage-colony stimulating factor. J Exp Med 1992; 176: 1693–1702.

    Article  CAS  PubMed  Google Scholar 

  13. Okada E, Sasaki A, Ishii N, Aoki I, Yasuda T, Nishioka K et al. Intranasal immunization of a DNA vaccine with interleukin 12 and granulocyte macrophage colony stimulating factor(GM-CSF) expressing plasmids in liposomes inducing strong mucosal and cell-mediated immune responses against HIV-1 antigen. J Immunol 1997; 159: 3638–3647.

    CAS  PubMed  Google Scholar 

  14. Sin JI, Kim JJ, Ugen KE, Ciccarelli RB, Higgins TJ, Weiner DB . Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune response against herpes simplex virus-2 through co-delivery of granulocyte-macrophage colony-stimulating factor expression cassettes. Eur J Immunol 1998; 28: 3530–3540.

    Article  CAS  PubMed  Google Scholar 

  15. Ritz SA, Cundall MJ, Gajewska BU, Swirski FK, Wiley RE, Alvarez D et al. The lung cytokine microenvironment influences molecular events in the lymph nodes during Th1 and Th2 respiratory mucosal sensitization to antigen in vivo. Clin Exp Immunol 2004; 138: 213–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 1999; 96: 1036–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maldonado-Lopez R, Desmedt T, Michel P, Godfroid J, Pajak B, Heirman C et al. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189: 587–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu HM, Newbrough SE, Bhatia SK, Dahle CE, Krieg AM, Weiner GJ . Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colony-stimulating factor. Blood 1998; 92: 3730–3736.

    CAS  PubMed  Google Scholar 

  19. Kusakabe K, Xin K-Q, Katoh H, Sumino K, Hagiwara E, Kawamoto S et al. The timing of GM-CSF expression plasmid administration influences the Th1/Th2 response induced by an HIV-1-specific DNA vaccine. J Immunol 2000; 164: 3102–3111.

    Article  CAS  PubMed  Google Scholar 

  20. Sollazzo M, Hasemann CA, Meek KD, Glotz D, Capra JD, Zanetti M . Molecular characterization of the VH region of murine autoantibodies from neonatal and adult BALB/c mice. Eur J Immunol 1989; 19: 453–457.

    Article  CAS  PubMed  Google Scholar 

  21. Gerloni M, Xiong S, Mukerjee S, Schoenberger SP, Croft M, Zanetti M . Functional cooperation between T helper cell determinants. Proc Natl Acad Sci USA 2000; 97: 13269–13274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morrison SL . Transfectomas provide novel chimeric antibodies. Science 1985; 229: 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  23. Gerloni M, Billetta R, Xiong S, Zanetti M . Somatic transgene immunization with DNA encoding an immunoglobulin heavy chain. DNA Cell Biol 1997; 16: 611–625.

    Article  CAS  PubMed  Google Scholar 

  24. Shen Y, Xu W, Chu Y-W, Wang Y, Liu QS, Xiong SD . Coxsackievirus group B type 3 infection upregulates expression of monocyte chemoattractant protein 1 in cardiac myocytes, which leads to enhanced migration of mononuclear cells in viral myocarditis. J Virol 2004; 78: 12548–12556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pullen GR, Fitzgerald MG, Hosking CS . Antibody avidity determination by ELISA using thiocyanate elution. J Immunol Methods 1986; 86: 83–87.

    Article  CAS  PubMed  Google Scholar 

  26. Chow YH, Chiang BL, Lee YL, Chi WK, Lin WC, Chen YT et al. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol 1998; 160: 1320–1329.

    CAS  PubMed  Google Scholar 

  27. Thienes CP, De Monte L, Monticelli S, Busslinger M, Gould HJ, Vercelli D . The transcription factor B cell-specific activator protein (BSAP) enhances both IL-4- and CD40-mediated activation of the human epsilon germline promoter. J Immunol 1997; 158: 5874–5882.

    CAS  PubMed  Google Scholar 

  28. Lobell A, Weissert R, Eltayeb S, de Graaf KL, Wefer J, Storch MK et al. Suppressive DNA vaccination in myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis involves a T1-biased immune response. J Immunol 2003; 170: 1806–1813.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy KM, Reiner SL . The lineage decisions of helper T cells. Nat Rev Immunol 2002; 2: 933–944 (Review).

    Article  CAS  PubMed  Google Scholar 

  30. Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH . Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8T cells. Science 2002; 295: 338–342.

    Article  CAS  PubMed  Google Scholar 

  31. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH . A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655–669.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A, Wang Q et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol 2004; 5: 1157–1165.

    Article  CAS  PubMed  Google Scholar 

  33. Lee GR, Fields PE, Flavell RA . Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 2001; 14: 447–459.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M . MUC1 and cancer. Biochim Biophys Acta 1999; 1455: 301–313.

    Article  CAS  PubMed  Google Scholar 

  35. Burchell J, Taylor-Papadimitriou J . Effect of modification of carbohydrate side chains on the reactivity of antibodies with core-protein epitopes of the MUC1 gene product. Epithelial Cell Biol 1993; 2: 155–162.

    CAS  PubMed  Google Scholar 

  36. Burchell J, Gendler S, Taylor-Papadimitriou J, Girling A, Lewis A, Millis R et al. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res 1987; 47: 5476–5482.

    CAS  PubMed  Google Scholar 

  37. Spicer AP, Rowse GJ, Lidner TK, Gendler SJ . Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem 1995; 270: 30093–30101.

    Article  CAS  PubMed  Google Scholar 

  38. Maraveyas A, Snook D, Hird V, Kosmas C, Meares CF, Lambert HE et al. Pharmacokinetics and toxicity of an yttrium-90-CITC-DTPA-HMFG1 radioimmunoconjugate for intraperitoneal radioimmunotherapy of ovarian cancer. Cancer 1994; 73: 1067–1075.

    Article  CAS  PubMed  Google Scholar 

  39. Riethmuller G, Schneider-Gadicke E, Schlimok G, Schmiegel W, Raab R, Hoffken K et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. German Cancer Aid 17-1A Study Group. Lancet 1994; 343: 1177–1183.

    Article  CAS  PubMed  Google Scholar 

  40. Nicholson S, Bomphray CC, Thomas H, McIndoe A, Barton D, Gore M et al. A phase I trial of idiotypic vaccination with HMFG1 in ovarian cancer. Cancer Immunol Immunother 2004; 53: 809–816.

    Article  CAS  PubMed  Google Scholar 

  41. Karsten U, Serttas N, Paulsen H, Danielczyk A, Goletz S . Binding patterns of DTR-specific antibodies reveal a glycosylation-conditioned tumor-specific epitope of the epithelial mucin (MUC1). Glycobiology 2004; 14: 681–692.

    Article  CAS  PubMed  Google Scholar 

  42. Zanetti M . Antigenized antibodies. Nature 1992; 355: 476–477.

    Article  CAS  PubMed  Google Scholar 

  43. Gerloni M, Lo D, Ballou WR, Zanetti M . Immunological memory after somatic transgene immunization is positively affected by priming with GM-CSF and does not require bone marrow-derived dendritic cells. Eur J Immunol 1998; 28: 1832–1838.

    Article  CAS  PubMed  Google Scholar 

  44. Gerloni M, Rizzi M, Castiglioni P, Zanetti M . T cell immunity using transgenic B lymphocytes. Proc Natl Acad Sci USA 2004; 101: 3892–3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding L, Lalani EN, Reddish M, Koganty R, Wong T, Samuel J et al. Immunogenicity of synthetic peptides related to the core peptide sequence encoded by the human MUC1 mucin gene: effect of immunization on the growth of murine mammary adenocarcinoma cells transfected with the human MUC1 gene. Cancer Immunol Immunother 1993; 36: 9–17.

    Article  CAS  PubMed  Google Scholar 

  46. Kontani K, Taguchi O, Ozaki Y, Hanaoka J, Tezuka N, Sawai S et al. Novel vaccination protocol consisting of injecting MUC1 DNA and nonprimed dendritic cells at the same region greatly enhanced MUC1-specific antitumor immunity in a murine model. Cancer Gene Ther 2002; 9: 330–337.

    Article  CAS  PubMed  Google Scholar 

  47. Gerloni M, Lo D, Zanetti M . DNA immunization in relB-deficient mice discloses a role for dendritic cells in IgM → IgG1 switch in vivo. Eur J Immunol 1998; 28: 516–524.

    Article  CAS  PubMed  Google Scholar 

  48. Cramer DW, Titus-Ernstoff L, McKolanis JR, Welch WR, Vitonis AF, Berkowitz RS et al. Conditions associated with antibodies against the tumor-associated antigen MUC1 and their relationship to risk for ovarian cancer. Cancer Epidemiol Biomarkers Prev 2005; 14: 1125–1131.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Taylor-Papadimitriou (Guy's Hospital, London, UK) for providing the SM-3 antibody and Professor Zanetti (UCSD, CA) for providing the expression plasmids as well as for experimental direction. We also thank Dr Walter J Urba (Robert W Franz Cancer Research Center, Portland, OR) and Dr Hong-Ming Hu (Earle A Chiles Research Institute, Portland, OR) for their help in revision of the manuscript. We thank Xiujuan Zheng for technical assistance. This work was supported partially by the NSFC (30170867), the Major State Basic Research Development Program of the People's Republic of China (2001CB510005), and Science and Technology Commission of Shanghai Municipality (04ZR14012, 04DZ14902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Xiong.

Additional information

Potential conflicts of interest: None

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, Y., Xia, M., Lin, Y. et al. Th2-dominated antitumor immunity induced by DNA immunization with the genes coding for a basal core peptide PDTRP and GM-CSF. Cancer Gene Ther 13, 510–519 (2006). https://doi.org/10.1038/sj.cgt.7700913

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700913

Keywords

This article is cited by

Search

Quick links