Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transposon-based interferon gamma gene transfer overcomes limitations of episomal plasmid for immunogene therapy of glioblastoma

Abstract

Despite improvements in gene delivery technology, transient expression of plasmid DNA has limited the efficacy of nonviral vectors applied to cancer gene therapy. We previously developed plasmid DNA vectors capable of transgene integration and long-term expression in human glioblastoma cells by utilizing the Sleeping Beauty (SB) transposable element. In this study, we compared the efficacy of interferon gamma (IFN-γ) immunogene therapy using episomal or SB vectors in a syngeneic GL261 glioma model. Gene delivery was achieved by intratumoral convection-enhanced delivery of DNA/polyethylenimine complexes. Only mice treated with SB transposase-encoding DNA to facilitate chromosomal integration exhibited a significant increase in survival (P<0.05). SB-mediated intratumoral gene transfer caused sustained IFN-γ expression assessed by reverse transcription-polymerase chain reaction, of both vector-derived and endogenous IFN-γ, whereas expression following episomal plasmid gene transfer was undetectable within 2 weeks. Median survival was enhanced further when SB-mediated IFN-γ gene transfer was combined with CpG oligodeoxynucleotides as adjuvant therapy. Prolonged survival positively correlated with tumor regression measured by in vivo bioluminescent imaging, and enhanced T-cell activation revealed by the ELISPOT assay. SB appears to improve the efficacy of cytokine gene therapy using nonviral vectors by enhancing the duration of transgene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 5
Figure 2
Figure 3
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lam PY, Breakefield XO . Potential of gene therapy for brain tumors. Hum Mol Genet 2001; 10: 777–787.

    Article  CAS  PubMed Central  Google Scholar 

  2. Ohlfest JR, Freese AB, Largaespada DA . Nonviral vectors for cancer gene therapy: prospects for integrating vectors and combination therapies. Curr Gene Ther 2005; 5: 629–641.

    Article  CAS  Google Scholar 

  3. King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, Castro MG . Gene therapy and targeted toxins for glioma. Curr Gene Ther 2005; 5: 535–557.

    Article  CAS  PubMed Central  Google Scholar 

  4. Dewey RA, Morrissey G, Cowsill CM, Stone D, Bolognani F, Dodd NJ et al. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nat Med 1999; 5: 1256–1263.

    Article  CAS  PubMed Central  Google Scholar 

  5. Ma HI, Guo P, Li J, Lin SZ, Chiang YH, Xiao X et al. Suppression of intracranial human glioma growth after intramuscular administration of an adeno-associated viral vector expressing angiostatin. Cancer Res 2002; 62: 756–763.

    CAS  PubMed  Google Scholar 

  6. Heinzerling L, Burg G, Dummer R, Maier T, Oberholzer PA, Schultz J et al. Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther 2005; 16: 35–48.

    Article  CAS  PubMed Central  Google Scholar 

  7. Galanis E, Burch PA, Richardson RL, Lewis B, Pitot HC, Frytak S et al. Intratumoral administration of a 1,2-dimyristyloxypropyl-3- dimethylhydroxyethyl ammonium bromide/dioleoylphosphatidylethanolamine formulation of the human interleukin-2 gene in the treatment of metastatic renal cell carcinoma. Cancer 2004; 101: 2557–2566.

    Article  CAS  Google Scholar 

  8. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  PubMed Central  Google Scholar 

  9. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004; 10: 967–972.

    Article  CAS  Google Scholar 

  10. Voges J, Reszka R, Gossmann A, Dittmar C, Richter R, Garlip G et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 2003; 54: 479–487.

    Article  CAS  Google Scholar 

  11. Ohlfest JR, Lobitz PD, Perkinson SG, Largaespada DA . Integration and long-term expression in xenografted human glioblastoma cells using a plasmid-based transposon system. Mol Ther 2004; 10: 260–268.

    Article  CAS  Google Scholar 

  12. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z . Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 1997; 91: 501–510.

    Article  CAS  Google Scholar 

  13. Izsvak Z, Ivics Z . Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 2004; 9: 147–156.

    Article  CAS  Google Scholar 

  14. Ohlfest JR, Demorest ZL, Motooka Y, Vengco I, Oh S, Chen E et al. Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the sleeping beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther 2005; 12: 778–788.

    Article  CAS  Google Scholar 

  15. Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X et al. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 1998; 9: 25–34.

    Article  CAS  Google Scholar 

  16. Young HA, Hardy KJ . Role of interferon-gamma in immune cell regulation. J Leukoc Biol 1995; 58: 373–381.

    Article  CAS  Google Scholar 

  17. Ehtesham M, Samoto K, Kabos P, Acosta FL, Gutierrez MA, Black KL et al. Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer. Cancer Gene Ther 2002; 9: 925–934.

    Article  CAS  Google Scholar 

  18. Asadullah K, Sterry W, Trefzer U . Cytokine therapy in dermatology. Exp Dermatol 2002; 11: 97–106.

    Article  CAS  Google Scholar 

  19. Olson JK, Miller SD . Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004; 173: 3916–3924.

    Article  CAS  Google Scholar 

  20. Geurts AM, Yang Y, Clark KJ, Liu G, Cui Z, Dupuy AJ et al. Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther 2003; 8: 108–117.

    Article  CAS  Google Scholar 

  21. Yant SR, Park J, Huang Y, Mikkelsen JG, Kay MA . Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol 2004; 24: 9239–9247.

    Article  CAS  PubMed Central  Google Scholar 

  22. Zayed H, Izsvak Z, Walisko O, Ivics Z . Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 2004; 9: 292–304.

    Article  CAS  Google Scholar 

  23. Baus J, Liu L, Heggestad AD, Sanz S, Fletcher BS . Hyperactive transposase mutants of the Sleeping Beauty transposon. Mol Ther 2005; 12: 1148–1156.

    Article  CAS  Google Scholar 

  24. Carpentier AF, Xie J, Mokhtari K, Delattre JY . Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs. Clin Cancer Res 2000; 6: 2469–2473.

    CAS  PubMed  Google Scholar 

  25. El Andaloussi A, Sonabend AM, Han Y, Lesniak MS . Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 2006; 54: 526–535.

    Article  Google Scholar 

  26. Goto T, Nishi T, Kobayashi O, Tamura T, Dev SB, Takeshima H et al. Combination electro-gene therapy using herpes virus thymidine kinase and interleukin-12 expression plasmids is highly efficient against murine carcinomas in vivo. Mol Ther 2004; 10: 929–937.

    Article  CAS  Google Scholar 

  27. Groth AC, Calos MP . Phage integrases: biology and applications. J Mol Biol 2004; 335: 667–678.

    Article  CAS  Google Scholar 

  28. Ivics Z, Izsvak Z . Transposons for gene therapy!. Curr Gene Ther 2006; 6: 593–607.

    Article  CAS  Google Scholar 

  29. Carpentier A, Laigle-Donadey F, Zohar S, Capelle L, Behin A, Tibi A et al. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro-oncol 2006; 8: 60–66.

    Article  CAS  PubMed Central  Google Scholar 

  30. Carpentier AF, Chen L, Maltonti F, Delattre JY . Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice. Cancer Res 1999; 59: 5429–5432.

    CAS  PubMed  Google Scholar 

  31. Deng GM, Liu ZQ, Tarkowski A . Intracisternally localized bacterial DNA containing CpG motifs induces meningitis. J Immunol 2001; 167: 4616–4626.

    Article  CAS  Google Scholar 

  32. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  Google Scholar 

  33. Wu A, Wiesner S, Xiao J, Ericson K, Chen W, Hall WA et al. Expression of MHC I and NK ligands on human CD133(+) glioma cells: possible targets of immunotherapy. J Neurooncol 2006 [E-pub ahead of print].

  34. Kuwashima N, Nishimura F, Eguchi J, Sato H, Hatano M, Tsugawa T et al. Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 2005; 175: 2730–2740.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Bob Allison Ataxia Research Center for their generous contributions in supporting the ‘Gene and Stem Cell’ core facility at the University of Minnesota. This work was supported by grants from the NIH/NCI 1R41CA126014-01 (JRO), NIH/NCI 5 P30 CA077598 (JRO, WC) and Graduate School of the University of Minnesota (JRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Ohlfest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, A., Oh, S., Ericson, K. et al. Transposon-based interferon gamma gene transfer overcomes limitations of episomal plasmid for immunogene therapy of glioblastoma. Cancer Gene Ther 14, 550–560 (2007). https://doi.org/10.1038/sj.cgt.7701045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701045

Keywords

This article is cited by

Search

Quick links