Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cereal grains, legumes and diabetes

Abstract

This review examines the evidence for the role of whole grain foods and legumes in the aetiology and management of diabetes. MedLine and SilverPlatter (‘Nutrition’ and ‘Food Science FSTA’) databases were searched to identify epidemiological and experimental studies relating to the effects of whole grain foods and legumes on indicators of carbohydrate metabolism. Epidemiological studies strongly support the suggestion that high intakes of whole grain foods protect against the development of type II diabetes mellitus (T2DM). People who consume 3 servings per day of whole grain foods are less likely to develop T2DM than low consumers (<3 servings per week) with a risk reduction in the order of 20–30%. The role of legumes in the prevention of diabetes is less clear, possibly because of the relatively low intake of leguminous foods in the populations studied. However, legumes share several qualities with whole grains of potential benefit to glycaemic control including slow release carbohydrate and a high fibre content. A substantial increase in dietary intake of legumes as replacement food for more rapidly digested carbohydrate might therefore be expected to improve glycaemic control and thus reduce incident diabetes. This is consistent with the results of dietary intervention studies that have found improvements in glycaemic control after increasing the dietary intake of whole grain foods, legumes, vegetables and fruit. The benefit has been attributed to an increase in soluble fibre intake. However, prospective studies have found that soluble fibre intake is not associated with a lower incidence of T2DM. On the contrary, it is cereal fibre that is largely insoluble that is associated with a reduced risk of developing T2DM. Despite this, the addition of wheat bran to the diets of diabetic people has not improved indicators of glycaemic control. These apparently contradictory findings might be explained by metabolic studies that have indicated improvement in glucose handling is associated with the intact structure of food. For both grains and legumes, fine grinding disrupts cell structures and renders starch more readily accessible for digestion. The extent to which the intact structure of grains and legumes or the composition of foods in terms of dietary fibre and other constituents contribute to the beneficial effect remains to be quantified. Other mechanisms to help explain improvements in glycaemic control when consuming whole grains and legumes relate to cooking, type of starch, satiety and nutrient retention. Thus, there is strong evidence to suggest that eating a variety of whole grain foods and legumes is beneficial in the prevention and management of diabetes. This is compatible with advice from around the world that recommends consumption of a wide range of carbohydrate foods from cereals, vegetables, legumes and fruits both for the general population and for people with diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Adams JF & Engstrom A (2000): Helping consumers achieve recommended intakes of whole grain foods. J. Am. Coll. Nutr. 19, 339S–344S.

    CAS  PubMed  Google Scholar 

  • Anderson JW & Ward K (1979): High-carbohydrate, high-fiber diets for insulin-treated men with diabetes mellitus. Am. J. Clin. Nutr. 32, 2312–2321.

    CAS  PubMed  Google Scholar 

  • Anderson JW, Chen WJ & Sieling B (1980): Hypolipidemic effects of high-carbohydrate, high-fiber diets. Metabolism 29, 551–558.

    CAS  PubMed  Google Scholar 

  • Anderson JW, Zeigler JA, Deakins DA, Floore TL, Dillon DW, Wood CL, Oeltgen PR & Whitley RJ (1991): Metabolic effects of high-carbohydrate, high-fiber diets for insulin-dependent diabetic individuals. Am. J. Clin. Nutr. 54, 936–943.

    CAS  PubMed  Google Scholar 

  • Anon (2000): Recommendations for the nutritional management of patients with diabetes mellitus. Eur. J. Clin. Nutr. 54, 353–355.

    Google Scholar 

  • Anon (2002): The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care 25, 2165–2171.

    Google Scholar 

  • Aro A, Uusitupa M, Voutilainen E, Hersio K, Korhonen T & Siitonen O (1981): Improved diabetic control and hypocholesterolaemic effect induced by long-term dietary supplementation with guar gum in type 2 (insulin-independent) diabetes. Diabetologia 21, 29–33.

    CAS  Google Scholar 

  • Beattie VA, Edwards CA, Hosker JP, Cullen DR, Ward JD & Read NW (1988): Does adding fibre to a low energy, high carbohydrate, low fat diet confer any benefit to the management of newly diagnosed overweight type II diabetics? BMJ. (Clin. Res. Ed) 296, 1147–1149.

    CAS  Google Scholar 

  • Braaten JT, Scott FW, Wood PJ, Riedel KD, Wolynetz MS, Brule D & Collins MW (1994): High beta-glucan oat bran and oat gum reduce postprandial blood glucose and insulin in subjects with and without type 2 diabetes. Diabet. Med. 11, 312–318.

    CAS  PubMed  Google Scholar 

  • Brand JC, Colagiuri S, Crossman S, Allen A, Roberts DC & Truswell AS (1991): Low-glycemic index foods improve long-term glycemic control in NIDDM. Diabetes Care 14, 95–101.

    CAS  Google Scholar 

  • Campbell AM & Penfield MP (1979): Starch and Flour. The Experimental Study of Food. Houghton: Miffling Company.

    Google Scholar 

  • Carroll DG, Dykes V & Hodgson W (1981): Guar gum is not a panacea in diabetes management. N. Z. Med. J. 93, 292–294.

    CAS  PubMed  Google Scholar 

  • Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM & Brinkley LJ (2000): Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl. J. Med. 342, 1392–1398.

    CAS  PubMed  Google Scholar 

  • Cohen M, Leong VW, Salmon E & Martin FI (1980): Role of guar and dietary fibre in the management of diabetes mellitus. Med. J. Aust. 1, 59–61.

    CAS  PubMed  Google Scholar 

  • Colditz GA, Manson JE, Stampfer MJ, Rosner B, Willett WC & Speizer FE (1992): Diet and risk of clinical diabetes in women. Am. J. Clin. Nutr. 55, 1018–1023.

    CAS  PubMed  Google Scholar 

  • Doi K, Matsuura M, Kawara A & Baba S (1979): Treatment of diabetes with glucomannan (konjac mannan). Lancet 1, 987–988.

    CAS  PubMed  Google Scholar 

  • Duncan KH, Bacon JA & Weinsier RL (1983): The effects of high and low energy density diets on satiety, energy intake, and eating time of obese and nonobese subjects. Am. J. Clin. Nutr. 37, 763–767.

    CAS  PubMed  Google Scholar 

  • Englyst HN & Cummings JH (1985): Digestion of the polysaccharides of some cereal foods in the human small intestine. Am. J. Clin. Nutr. 42, 778–787.

    CAS  PubMed  Google Scholar 

  • FAO/WHO (1998): Carbohydrates in human nutrition. FAO Food and Nutrition Paper-66.

  • FDA (1999): Health claim notification for whole grain foods. Internet: http://www.cfsan.fda.gov/~dms/flgrains.html accessed 10th March 2003.

  • Fontvieille AM, Rizkalla SW, Penfornis A, Acosta M, Bornet FR & Slama G (1992): The use of low glycaemic index foods improves metabolic control of diabetic patients over five weeks. Diabet. Med. 9, 444–450.

    CAS  Google Scholar 

  • Foster-Powell K, Holt SH & Brand-Miller JC (2002): International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 76, 5–56.

    CAS  Google Scholar 

  • Frost G, Wilding J & Beecham J (1994): Dietary advice based on the glycaemic index improves dietary profile and metabolic control in type 2 diabetic patients. Diabet. Med. 11, 397–401.

    CAS  PubMed  Google Scholar 

  • Fukagawa NK, Anderson JW, Hageman G, Young VR & Minaker KL (1990): High-carbohydrate, high-fiber diets increase peripheral insulin sensitivity in healthy young and old adults. Am. J. Clin. Nutr. 52, 524–528.

    CAS  PubMed  Google Scholar 

  • Fung TT, Hu FB, Pereira MA, Liu S, Stampfer MJ, Colditz GA & Willett WC (2002): Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. Am. J. Clin. Nutr. 76, 535–540.

    CAS  PubMed  Google Scholar 

  • Gallaher DD, Wood KJ, Gallaher CM, Marquart LF & Engstrom AM (1999): Intestinal contents supernatant viscosity of rats fed oat-based muffins and cereal products. Cereal Chem. 76, 21–24.

    CAS  Google Scholar 

  • Giacco R, Parillo M, Rivellese AA, Lasorella G, Giacco A, D'Episcopo L & Riccardi G (2000): Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural foods improves blood glucose control and reduces the number of hypoglycemic events in type 1 diabetic patients. Diabetes Care 23, 1461–1466.

    CAS  PubMed  Google Scholar 

  • Goddard MS, Young G & Marcus R (1984): The effect of amylose content on insulin and glucose responses to ingested rice. Am. J. Clin. Nutr. 39, 388–392.

    CAS  PubMed  Google Scholar 

  • Golay A, Coulston AM, Hollenbeck CB, Kaiser LL, Wursch P & Reaven GM (1986): Comparison of metabolic effects of white beans processed into two different physical forms. Diabetes Care 9, 260–266.

    CAS  PubMed  Google Scholar 

  • Granfeldt Y, Hagander B & Bjorck I (1995): Metabolic responses to starch in oat and wheat products. On the importance of food structure, incomplete gelatinization or presence of viscous dietary fibre. Eur. J. Clin. Nutr. 49, 189–199.

    CAS  PubMed  Google Scholar 

  • Granfeldt Y, Liljeberg H, Drews A, Newman R & Bjorck I (1994): Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio. Am. J. Clin. Nutr. 59, 1075–1082.

    CAS  PubMed  Google Scholar 

  • Heaton KW, Marcus SN, Emmett PM & Bolton CH (1988): Particle size of wheat, maize, and oat test meals: effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. Am. J. Clin. Nutr. 47, 675–682.

    CAS  Google Scholar 

  • Hjollund E, Pedersen O, Richelsen B, Beck-Nielsen H & Sorensen NS (1983): Increased insulin binding to adipocytes and monocytes and increased insulin sensitivity of glucose transport and metabolism in adipocytes from non-insulin-dependent diabetics after a low-fat/high-starch/high-fiber diet. Metabolism 32, 1067–1075.

    CAS  PubMed  Google Scholar 

  • Hollenbeck CB, Coulston AM & Reaven GM (1986): To what extent does increased dietary fiber improve glucose and lipid metabolism in patients with noninsulin-dependent diabetes mellitus (NDDM)? Am. J. Clin. Nutr. 43, 16–24.

    CAS  PubMed  Google Scholar 

  • Hollenbeck CB, Riddle MC, Connor WE & Leklem JE (1985): The effects of subject-selected high carbohydrate, low fat diets on glycemic control in insulin dependent diabetes mellitus. Am. J. Clin. Nutr. 41, 293–298.

    CAS  PubMed  Google Scholar 

  • Holm J & Bjorck I (1992): Bioavailability of starch in various wheat-based bread products: evaluation of metabolic responses in healthy subjects and rate and extent of in vitro starch digestion. Am. J. Clin. Nutr. 55, 420–429.

    CAS  Google Scholar 

  • Holt SH & Miller JB (1994): Particle size, satiety and the glycaemic response. Eur. J. Clin. Nutr. 48, 496–502.

    CAS  Google Scholar 

  • Institute of Medicine (1999): Magnesium, Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride. Washington DC: National Academy Press.

  • Jacobs Jr DR, Meyer KA, Kushi LH & Folsom AR (1998): Whole-grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: the Iowa Women's Health Study. Am. J. Clin. Nutr. 68, 248–257.

    CAS  Google Scholar 

  • Jacobs DR, Pereira MA, Meyer KA & Kushi LH (2000): Fiber from whole grains, but not refined grains, is inversely associated with all-cause mortality in older women: the Iowa women's health study. J. Am. Coll. Nutr. 19, 326S–330S.

    CAS  PubMed  Google Scholar 

  • Jang Y, Lee JH, Kim OY, Park HY & Lee SY (2001): Consumption of whole grain and legume powder reduces insulin demand, lipid peroxidation, and plasma homocysteine concentrations in patients with coronary artery disease: randomized controlled clinical trial. Arterioscler. Thromb. Vasc. Biol. 21, 2065–2071.

    CAS  PubMed  Google Scholar 

  • Järvi AE, Karlstrom BE, Granfeldt YE, Bjorck IE, Asp NG & Vessby BO (1999): Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 22, 10–18.

    Google Scholar 

  • Järvi AE, Karlstrom BE, Granfeldt YE, Bjorck IM, Vessby BO & Asp NG (1995): The influence of food structure on postprandial metabolism in patients with non-insulin-dependent diabetes mellitus. Am. J. Clin. Nutr. 61, 837–842.

    PubMed  Google Scholar 

  • Jenkins DJ, Goff DV, Leeds AR, Alberti KG, Wolever TM, Gassull MA & Hockaday TD (1976): Unabsorbable carbohydrates and diabetes: Decreased post-prandial hyperglycaemia. Lancet 2, 172–174.

    CAS  PubMed  Google Scholar 

  • Jenkins DJ, Kendall CW, Augustin LS, Martini MC, Axelsen M, Faulkner D, Vidgen E, Parker T, Lau H, Connelly PW, Teitel J, Singer W, Vandenbroucke AC, Leiter LA & Josse RG (2002): Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes Care 25, 1522–1528.

    CAS  PubMed  Google Scholar 

  • Jenkins DJ, Wolever TM, Buckley G, Lam KY, Giudici S, Kalmusky J, Jenkins AL, Patten RL, Bird J & Wong GS et al. (1988): Low-glycemic-index starchy foods in the diabetic diet. Am. J. Clin. Nutr. 48, 248–254.

    CAS  PubMed  Google Scholar 

  • Jenkins DJ, Wolever TM, Collier GR, Ocana A, Rao AV, Buckley G, Lam Y, Mayer A & Thompson LU (1987): Metabolic effects of a low-glycemic-index diet. Am. J. Clin. Nutr. 46, 968–975.

    CAS  Google Scholar 

  • Jenkins DJ, Wolever TM, Jenkins AL, Giordano C, Giudici S, Thompson LU, Kalmusky J, Josse RG & Wong GS (1986): Low glycemic response to traditionally processed wheat and rye products: bulgur and pumpernickel bread. Am. J. Clin. Nutr. 43, 516–520.

    CAS  PubMed  Google Scholar 

  • Jenkins DJ, Wolever TM, Leeds AR, Gassull MA, Haisman P, Dilawari J, Goff DV, Metz GL & Alberti KG (1978): Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. BMJ 1, 1392–1394.

    CAS  PubMed  Google Scholar 

  • Jenkins DJ, Wolever TM, Taylor RH, Griffiths C, Krzeminska K, Lawrie JA, Bennett CM, Goff DV, Sarson DL & Bloom SR (1982): Slow release dietary carbohydrate improves second meal tolerance. Am. J. Clin. Nutr. 35, 1339–1346.

    CAS  PubMed  Google Scholar 

  • Jimenez-Cruz A, Bacardi-Gascon M, Turnbull WH, Rosales-Garay P & Severino-Lugo I (2003): A flexible, low-glycemic index mexican-style diet in overweight and obese subjects with type 2 diabetes improves metabolic parameters during a 6-week treatment period. Diabetes Care 26, 1967–1970.

    PubMed  Google Scholar 

  • Jones DB, Slaughter P, Lousley S, Carter RD, Jelfs R & Mann JI (1985): Low-dose guar improves diabetic control. J. R. Soc. Med. 78, 546–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL & Brancati FL (1999): Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch. Intern. Med. 159, 2151–2159.

    CAS  PubMed  Google Scholar 

  • Karlstrom B, Vessby B, Asp NG, Boberg M, Lithell H & Berne C (1987): Effects of leguminous seeds in a mixed diet in non-insulin-dependent diabetic patients. Diabetes Res 5, 199–205.

    CAS  PubMed  Google Scholar 

  • Kay RM, Grobin W & Track NS (1981): Diets rich in natural fibre improve carbohydrate tolerance in maturity-onset, non-insulin dependent diabetics. Diabetologia 20, 18–21.

    CAS  PubMed  Google Scholar 

  • Khan LA, Alam AM, Ali L, Goswami A, Hassan Z, Sattar S, Banik NG & Khan AK (1999): Serum and urinary magnesium in young diabetic subjects in Bangladesh. Am. J. Clin. Nutr. 69, 70–73.

    CAS  PubMed  Google Scholar 

  • Kiehm TG, Anderson JW & Ward K (1976): Beneficial effects of a high carbohydrate, high fiber diet on hyperglycemic diabetic men. Am. J. Clin. Nutr. 29, 895–899.

    CAS  PubMed  Google Scholar 

  • Kinmonth AL, Angus RM, Jenkins PA, Smith MA & Baum JD (1982): Whole foods and increased dietary fibre improve blood glucose control in diabetic children. Arch. Dis. Child. 57, 187–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA & Nathan DM (2002): Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403.

    CAS  PubMed  Google Scholar 

  • Larsen HN, Rasmussen OW, Rasmussen PH, Alstrup KK, Biswas SK, Tetens I, Thilsted SH & Hermansen K (2000): Glycaemic index of parboiled rice depends on the severity of processing: study in type 2 diabetic subjects. Eur. J. Clin. Nutr. 54, 380–385.

    CAS  Google Scholar 

  • Leeds AR (1979): The dietary management of diabetes in adults. Proc. Nutr. Soc. 38, 365–371.

    CAS  PubMed  Google Scholar 

  • Levrat-Verny MA, Coudray C, Bellanger J, Lopez HW, Demigne C, Rayssiguier Y & Remesy C (1999): Wholewheat flour ensures higher mineral absorption and bioavailability than white wheat flour in rats. Br. J. Nutr. 82, 17–21.

    CAS  PubMed  Google Scholar 

  • Liljeberg H & Bjorck I (2000): Effects of a low-glycaemic index spaghetti meal on glucose tolerance and lipaemia at a subsequent meal in healthy subjects. Eur. J. Clin. Nutr. 54, 24–28.

    CAS  PubMed  Google Scholar 

  • Liljeberg HG, Akerberg AK & Bjorck IM (1999): Effect of the glycemic index and content of indigestible carbohydrates of cereal-based breakfast meals on glucose tolerance at lunch in healthy subjects. Am. J. Clin. Nutr. 69, 647–655.

    CAS  Google Scholar 

  • Liljeberg H, Granfeldt Y & Bjorck I (1992): Metabolic responses to starch in bread containing intact kernels versus milled flour. Eur. J. Clin. Nutr. 46, 561–575.

    CAS  Google Scholar 

  • Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, Hennekens CH & Willett WC (2000): A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am. J. Public Health 90, 1409–1415.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu ZX, Walker KZ, Muir JG, Mascara T & O'Dea K (2000): Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am. J. Clin. Nutr. 71, 1123–1128.

    CAS  PubMed  Google Scholar 

  • MacDougall AJ & Selvendran RR (2001): Chemistry, architecture, and composition of dietary fiber from plant cell walls. In The Handbook of Dietary Fiber eds Cho SS & Dreher ML. New York: Marcel Dekker Inc.

    Google Scholar 

  • Mann JI (2001): Dietary fibre and diabetes revisited. Eur. J. Clin. Nutr. 55, 919–921.

    CAS  PubMed  Google Scholar 

  • Mann JI (2002): Diet and risk of coronary heart disease and type 2 diabetes. Lancet. 360, 783–789.

    CAS  PubMed  Google Scholar 

  • Maron DJ, Fair JM & Haskell WL (1991): Saturated fat intake and insulin resistance in men with coronary artery disease. The Stanford Coronary Risk Intervention Project Investigators and Staff. Circulation 84, 2020–2027.

    CAS  PubMed  Google Scholar 

  • McAuley KA, Williams SM, Mann JI, Goulding A, Chisholm A, Wilson N, Story G, McLay RT, Harper MJ & Jones IE (2002): Intensive lifestyle changes are necessary to improve insulin sensitivity: a randomized controlled trial. Diabetes Care 25, 445–452.

    PubMed  Google Scholar 

  • McKeown NM, Meigs JB, Liu S, Wilson PW & Jacques PF (2002): Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am. J. Clin. Nutr. 76, 390–398.

    CAS  PubMed  Google Scholar 

  • Meyer KA, Kushi LH, Jacobs Jr DR, Slavin J, Sellers TA & Folsom AR (2000): Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 71, 921–930.

    CAS  Google Scholar 

  • Montonen J, Knekt P, Jarvinen R, Aromaa A & Reunanen A (2003): Whole-grain and fiber intake and the incidence of type 2 diabetes. Am. J. Clin. Nutr. 77, 622–629.

    CAS  PubMed  Google Scholar 

  • Mugford D (1983): Nutritional composition of Aust wheat and bakers' flour. Austral. Bakers Millers J. 86, 27–29.

    Google Scholar 

  • North American Millers Association (2000): How Wheat Flour is Milled. Internet: http://www.namamillers.org/prd_w_mill.html accessed 10th March 2003.

  • O'Dea K & Wong S (1983): The rate of starch hydrolysis in vitro does not predict the metabolic responses to legumes in vivo. Am. J. Clin. Nutr. 38, 382–387.

    CAS  PubMed  Google Scholar 

  • O'Dea K, Nestel PJ & Antonoff L (1980): Physical factors influencing postprandial glucose and insulin responses to starch. Am. J. Clin. Nutr. 33, 760–765.

    CAS  Google Scholar 

  • O'Dea K, Traianedes K, Ireland P, Niall M, Sadler J, Hopper J & De Luise M (1989): The effects of diet differing in fat, carbohydrate, and fiber on carbohydrate and lipid metabolism in type II diabetes. J. Am. Diet. Assoc. 89, 1076–1086.

    CAS  PubMed  Google Scholar 

  • O'Donnell LJ, Emmett PM & Heaton K.W (1989): Size of flour particles and its relation to glycaemia, insulinaemia, and colonic disease. BMJ. 298, 1616–1617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, Liu PA, Jiang XG, Jiang YY, Wang JP, Zheng H, Zhang H, Bennett PH & Howard BV (1997): Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20, 537–544.

    CAS  Google Scholar 

  • Panlasigui LN, Thompson LU, Juliano BO, Perez CM, Yiu SH & Greenberg GR (1991): Rice varieties with similar amylose content differ in starch digestibility and glycemic response in humans. Am. J. Clin. Nutr. 54, 871–877.

    CAS  PubMed  Google Scholar 

  • Paolisso G, Sgambato S, Gambardella A, Pizza G, Tesauro P, Varricchio M & D'Onofrio F (1992): Daily magnesium supplements improve glucose handling in elderly subjects. Am. J. Clin. Nutr. 55, 1161–1167.

    CAS  PubMed  Google Scholar 

  • Parillo M, Riccardi G, Pacioni D, Iovine C, Contaldo F, Isernia C, De Marco F, Perrotti N & Rivellese A (1988): Metabolic consequences of feeding a high-carbohydrate, high-fiber diet to diabetic patients with chronic kidney failure. Am. J. Clin. Nutr. 48, 255–259.

    CAS  PubMed  Google Scholar 

  • Pereira MA, Jacobs Jr DR, Pins JJ, Raatz SK, Gross MD, Slavin JL & Seaquist ER (2002): Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am. J. Clin. Nutr. 75, 848–855.

    CAS  PubMed  Google Scholar 

  • Phillips RJ & Powley TL (1996): Gastric volume rather than nutrient content inhibits food intake. Am. J. Physiol. 271, R766–R769.

    CAS  PubMed  Google Scholar 

  • Pick ME, Hawrysh MI & Toth E (1998): Barley bread products improve glycemic control of type 2 subjects, Int. J. Food. Sci. Nutr. 49, 71–78.

    Google Scholar 

  • Ray TK, Mansell KM, Knight LC, Malmud LS, Owen OE & Boden G (1983): Long-term effects of dietary fiber on glucose tolerance and gastric emptying in noninsulin-dependent diabetic patients. Am. J. Clin. Nutr. 37, 376–381.

    CAS  PubMed  Google Scholar 

  • Reinhold JG, Faradji B, Abadi P & Ismail-Beigi F (1976): Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. J. Nutr. 106, 493–503.

    CAS  PubMed  Google Scholar 

  • Riccardi G, Rivellese A, Pacioni D, Genovese S, Mastranzo P & Mancini M (1984): Separate influence of dietary carbohydrate and fibre on the metabolic control in diabetes. Diabetologia 26, 116–121.

    CAS  PubMed  Google Scholar 

  • Rivellese A, Riccardi G, Giacco A, Pacioni D, Genovese S, Mattioli PL & Mancini M (1980): Effect of dietary fibre on glucose control and serum lipoproteins in diabetic patients. Lancet 2, 447–450.

    CAS  PubMed  Google Scholar 

  • Roberts SB & Heyman MB (2000): Dietary composition and obesity: do we need to look beyond dietary fat? J. Nutr. 130, 267S.

    CAS  PubMed  Google Scholar 

  • Rosolova H, Mayer Jr O & Reaven G (1997): Effect of variations in plasma magnesium concentration on resistance to insulin-mediated glucose disposal in nondiabetic subjects. J. Clin. Endocrinol. Metab. 82, 3783–3785.

    CAS  PubMed  Google Scholar 

  • Salmeron J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, Stampfer MJ, Wing AL & Willett WC (1997a): Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 20, 545–550.

    CAS  Google Scholar 

  • Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL & Willett WC (1997b): Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 277, 472–477.

    CAS  Google Scholar 

  • Schroeder HA (1971): Losses of vitamins and trace minerals resulting from processing and preservation of foods. Am. J. Clin. Nutr. 24, 562–573.

    CAS  PubMed  Google Scholar 

  • Simpson HC, Simpson RW, Lousley S, Carter RD, Geekie M, Hockaday TD & Mann JI (1981): A high carbohydrate leguminous fibre diet improves all aspects of diabetic control. Lancet 1, 1–5.

    CAS  PubMed  Google Scholar 

  • Simpson RW, Mann JI, Eaton J, Carter RD & Hockaday TD (1979a): High-carbohydrate diets and insulin-dependent diabetics. BMJ 2, 523–525.

    CAS  PubMed  Google Scholar 

  • Simpson RW, Mann JI, Eaton J, Moore RA, Carter R & Hockaday TD (1979b): Improved glucose control in maturity-onset diabetes treated with high-carbohydrate-modified fat diet. BMJ 1, 1753–1756.

    CAS  PubMed  Google Scholar 

  • Simpson RW, McDonald J, Wahlqvist ML, Balasz N, Sissons M & Atley L (1988): Temporal study of metabolic change when poorly controlled noninsulin-dependent diabetics change from low to high carbohydrate and fiber diet. Am. J. Clin. Nutr. 48, 104–109.

    CAS  PubMed  Google Scholar 

  • Snow P & O'Dea K (1981): Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr. 34, 2721–2727.

    CAS  PubMed  Google Scholar 

  • Sparti A, Milon H, Di Vetta V, Schneiter P, Tappy L, Jequier E & Schutz Y (2000): Effect of diets high or low in unavailable and slowly digestible carbohydrates on the pattern of 24-h substrate oxidation and feelings of hunger in humans. Am. J. Clin. Nutr. 72, 1461–1468.

    CAS  PubMed  Google Scholar 

  • Stevens J, Ahn K, Juhaeri, Houston D, Steffan L & Couper D (2002): Dietary fiber intake and glycemic index and incidence of diabetes in African-American and white adults: the ARIC study. Diabetes Care 25, 1715–1721.

    CAS  PubMed  Google Scholar 

  • Story L, Anderson JW, Chen WJ, Karounos D & Jefferson B (1985): Adherence to high-carbohydrate, high-fiber diets: long-term studies of non-obese diabetic men. J. Am. Diet. Assoc. 85, 1105–1110.

    CAS  PubMed  Google Scholar 

  • Tappy L, Gugolz E & Wursch P (1996): Effects of breakfast cereals containing various amounts of beta-glucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care 19, 831–834.

    CAS  Google Scholar 

  • Tappy L, Wursch P, Randin JP, Felber JP & Jequier E (1986): Metabolic effect of pre-cooked instant preparations of bean and potato in normal and in diabetic subjects. Am. J. Clin. Nutr. 43, 30–36.

    CAS  PubMed  Google Scholar 

  • Thorburn A, Muir J & Proietto J (1993): Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism 42, 780–785.

    CAS  PubMed  Google Scholar 

  • Trowell H (1974): Diabetes mellitus death-rates in England and Wales 1920-70 and food supplies. Lancet 2, 998–1002.

    CAS  PubMed  Google Scholar 

  • Trowell H (1978): Diabetes mellitus and dietary fiber of starchy foods. Am. J. Clin. Nutr. 31, S53–S57.

    CAS  PubMed  Google Scholar 

  • Truswell AS (2002): Cereal grains and coronary heart disease. Eur. J. Clin. Nutr. 56, 1–14.

    CAS  PubMed  Google Scholar 

  • Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V & Uusitupa M (2001): Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350.

    CAS  Google Scholar 

  • Turner RC, Cull CA, Frighi V & Holman RR (1999): Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281, 2005–2012.

    CAS  PubMed  Google Scholar 

  • United States Department of Agriculture (2003): National Nutrient Database for Standard Reference Release 15. Internet: www.nal.usda.gov/fnic/foodcomp accessed 7th July 2003.

  • Vinik AI, Wing RR & Lauterio TJ (1997): Nutritional management of the person with diabetes. Ellenberg and Rifkin's Diabetes Mellitus eds Porte D & Sherwin RS Connecticut: Appleton and Lange.

    Google Scholar 

  • Vuksan V, Jenkins DJ, Spadafora P, Sievenpiper JL, Owen R, Vidgen E, Brighenti F, Josse R, Leiter LA & Bruce-Thompson C (1999): Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial. Diabetes Care 22, 913–919.

    CAS  PubMed  Google Scholar 

  • Vuksan V, Sievenpiper JL, Owen R, Swilley JA, Spadafora P, Jenkins DJ, Vidgen E, Brighenti F, Josse RG, Leiter LA, Xu Z & Novokmet R (2000): Beneficial effects of viscous dietary fiber from Konjac-mannan in subjects with the insulin resistance syndrome: results of a controlled metabolic trial. Diabetes Care 23, 9–14.

    CAS  PubMed  Google Scholar 

  • Ward GM, Simpson RW, Simpson HC, Naylor BA, Mann JI & Turner RC (1982): Insulin receptor binding increased by high carbohydrate low fat diet in non-insulin-dependent diabetics. Eur. J. Clin. Invest. 12, 93–96.

    CAS  PubMed  Google Scholar 

  • Weinsier RL, Johnston MH, Doleys DM & Bacon JA (1982): Dietary management of obesity: evaluation of the time-energy displacement diet in terms of its efficacy and nutritional adequacy for long-term weight control. Br. J. Nutr. 47, 367–379.

    CAS  PubMed  Google Scholar 

  • White Jr JR & Campbell RK (1993): Magnesium and diabetes: a review. Ann. Pharmacother. 27, 775–780.

    PubMed  Google Scholar 

  • WHO/FAO (2003): Diet, nutrition, and the prevention of chronic diseases. WHO Technical Report Series 916.

  • Wolever TM, Jenkins DJ, Kalnusky J, Jenkins A, Giordano C, Guidici S, Josse R & Wong GS (1986): Comparison of regular and parboiled rices: explanation of discrepancies between reported glycemic responses to rice. Nutr. Res. 6, 349–357.

    Google Scholar 

  • Wolever TM, Jenkins DJ, Ocana AM, Rao VA & Collier GR (1988): Second-meal effect: low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. Am. J. Clin. Nutr. 48, 1041–1047.

    CAS  PubMed  Google Scholar 

  • Wolever TM, Vuksan V, Eshuis H, Spadafora P, Peterson RD, Chao ES, Storey ML & Jenkins DJ (1991): Effect of method of administration of psyllium on glycemic response and carbohydrate digestibility. J. Am. Coll. Nutr. 10, 364–371.

    CAS  Google Scholar 

  • Wong S & O'Dea K. (1983): Importance of physical form rather than viscosity in determining the rate of starch hydrolysis in legumes. Am. J. Clin. Nutr. 37, 66–70.

    CAS  PubMed  Google Scholar 

  • Würsch P, Del Vedovo S & Koellreutter B (1986): Cell structure and starch nature as key determinants of the digestion rate of starch in legume. Am. J. Clin. Nutr. 43, 25–29.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Guarantor: BJ Venn and JI Mann.

Contributors: BJV and JIM researched and wrote the review.

Corresponding author

Correspondence to B J Venn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venn, B., Mann, J. Cereal grains, legumes and diabetes. Eur J Clin Nutr 58, 1443–1461 (2004). https://doi.org/10.1038/sj.ejcn.1601995

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1601995

Keywords

This article is cited by

Search

Quick links