Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Association and linkage of leprosy phenotypes with HLA class II and tumour necrosis factor genes

Abstract

Previous analyses indicate major gene control of susceptibility to leprosy per se and the HLA class II region has been implicated in determining susceptibility and control of clinical phenotype. Segregation analysis using data from 76 Brazilian leprosy multi-case pedigrees (1166 individuals) supported a two locus model as the best fit: a recessive major gene and a recessive modifier gene(s) (single locus vs two locus model, P = 0.0007). Combined segregation and linkage analysis to the major locus, showed strong linkage to HLA class II (HLA-DQB1 P = 0.000002, HLA-DQA1 P = 0.000002, HLA-DRB1 P = 0.0000003) and tumour necrosis factor genes (TNF P = 0.00002, LTA P = 0.003). Extended transmission disequilibrium testing, using multiple affected family members, demonstrated that the common allele TNF*1 of the −308 promoter region polymorphism showed linkage and/or association with disease per se, at a high level of significance (P < 0.0001). Two locus transmission disequilibrium testing suggested susceptibility (TNF*1/LTA*2) and protective (TNF*2/LTA*2) haplotypes in the class iii region. Taken together the segregation and HLA analyses suggest the possibility of more than one susceptibility locus in the MHC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. WHO Leprosy web page&lt;http://www.who.int/lep/&gt;

  2. Ridley DS, Jopling WH Classification of leprosy according to immunity. A five-group system Int J Lepr Other Mycobact Dis 1966 34 255–273

    CAS  PubMed  Google Scholar 

  3. Fine PEM Natural history of leprosy – Aspects relevant to a leprosy vaccine Int J Leprosy 1983 51 553–555

    CAS  Google Scholar 

  4. Fine PEM Immunogenetics of susceptibility to leprosy, tuberculosis, and leishmaniasis. An epidemiological perspective Int J Leprosy 1981 49 437–454

    CAS  Google Scholar 

  5. Haile RWC, Iselius L, Fine PEM, Morton NE Segregation and linkage analysis of 72 leprosy pedigrees Hum Hered 1985 35 43–52

    Article  CAS  PubMed  Google Scholar 

  6. Shields ED, Russell DA, Pericak-Vance MA Genetic epidemiology of the susceptibility to leprosy J Clin Invest 1987 79 1139–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abel L, Demenais F Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean island: Desirade island Am J Hum Genet 1988 42 256–266

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wagener DK, Schauf V, Nelson KE, Scollard D, Brown A, Smith T Segregation analysis of leprosy in families of Northen Thailand Genet Epidemiol 1988 5 95–105

    Article  CAS  PubMed  Google Scholar 

  9. Abel L, Oberti J, Lap VD et al Segregation analysis of leprosy in Vietnam Am J Hum Genet 1992 51 A335. (Abstract)

    Google Scholar 

  10. Feitosa MF, Borecki I, Krieger H, Beiguelman B, Rao DC The genetic epidemiology of leprosy in a Brazilian population Am J Hum Genet 1995 56 1179–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shaw M-A, Collins A, Peacock CS et al Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under two-locus oligogenic control which is not linked to the candidate genes NRAMP1 or TNF-A Tubercle and Lung Disease 1997 78 35–45

    Article  CAS  PubMed  Google Scholar 

  12. Shaw MA, Davies CR, Llanos-Cuentas EA, Collins A Human genetic susceptibility and infection with Leishmania peruviana Am J Hum Genet 1995 57 1159–1168

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alcais A, Abel L, David C, Torrez ME, Flandre P, Dedet JP Evidence for a major gene controlling susceptibility to tegumentary leishmaniasis in a recently exposed Bolivian population Am J Hum Genet 1997 61 968–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fine PEM, Wolf E, Pritchard J et al HLA-linked genes and leprosy: a family study in Karigiri, South India J Infect Dis 1979 140 152–161

    Article  CAS  PubMed  Google Scholar 

  15. Rawlinson WD, Basten A, Britton WJ, Serjeantson SW Leprosy and immunity: genetics and immune function in multiple case families Immunol Cell Biol 1988 66 9–21

    Article  PubMed  Google Scholar 

  16. Dessoukey MW, El Shiemy S, Sallam T HLA and leprosy: Segregation and linkage study Int J Dermatol 1996 35 257–264

    Article  CAS  PubMed  Google Scholar 

  17. de Vries RRP, Fat RFMLA, Nijenhuis LE, van Rood JJ HLA-linked genetic control of host response to Mycobacterium leprae Lancet 1976 ii 1328–1330

    Article  Google Scholar 

  18. Serjeantson SW HLA and susceptibility to leprosy Immunol Rev 1983 70 89–112

    Article  CAS  PubMed  Google Scholar 

  19. Ottenhoff THM, Neuteboom S, Elferink DG, de Vries RRP Molecular localization and polymorphism of HLA class-II restriction determinants defined by Mycobacterium leprae-reactive helper T-cell clones from leprosy patients J Exp Med 1986 164 1923–1939

    Article  CAS  PubMed  Google Scholar 

  20. Todd JR, West BC, McDonald JC Human leukocyte antigen and leprosy: study in northern Louisiana and review Rev Infect Dis 1990 12 63–74

    Article  CAS  PubMed  Google Scholar 

  21. Meyer CG, May J, Stark K Human leukocyte antigens in tuberculosis and leprosy Trends in Microbiol 1998 6 148–154

    Article  CAS  Google Scholar 

  22. van Eden W, de Vries RRP, Mehra NK, Vaidya MC, D’Amaro J, van Rood JJ HLA segregation of tuberculoid leprosy: confirmation of the DR2 marker J Infect Dis 1980 141 693–701

    Article  CAS  PubMed  Google Scholar 

  23. Schauf V, Ryan S, Scollard D et al Leprosy associated with HLA-DR2 and DQw1 in the population of northern Thailand Tissue Antigens 1985 26 243–247

    Article  CAS  PubMed  Google Scholar 

  24. Mehra N Role of HLA linked factors in governing susceptibility to leprosy and tuberculosis Trop Med Parasitol 1990 41 352–354

    CAS  PubMed  Google Scholar 

  25. van Eden W, Gonzalez NM, de Vries RRP, Convit J, van Rood JJ HLA linked control of predisposition to lepromatous leprosy J Infect Dis 1985 151 9–14

    Article  CAS  PubMed  Google Scholar 

  26. Ottenhoff T, de Vries R HLA-DR3 molecules are the products of an HLA class II immune regulator gene for Mycobacterium leprae predisposing to tuberculoid leprosy In: Recognition of Mycobacterium leprae antigens Martinus Nijhoff Publishing: Dordrecht 1987 pp 101–123

    Chapter  Google Scholar 

  27. Roy S, McGuire W, Mascie-Taylor CGN et al Tumour necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy J Infect Dis 1997 176 530–532

    Article  CAS  PubMed  Google Scholar 

  28. McGuire W, Hill ASV, Allsop CEM, Greenwood BM, Kwiatkowski D Variation in the TNF-α promoter region associated with susceptibility to cerebral malaria Nature 1994 371 508–511

    Article  CAS  PubMed  Google Scholar 

  29. Cabrera M, Shaw MA, Sharples C et al Polymorphism in TNF genes associated with mucocutaneous leishmaniasis J Exp Med 1995 182 1259–1264

    Article  CAS  PubMed  Google Scholar 

  30. Conway DJ, Holland MJ, Bailey RL et al Scarring trachoma is associated with polymorphism in the tumor necrosis factor alpha (TNF-alpha) gene promoter and with elevated TNF-alpha levels in tear fluid Infect Immun 1997 65 1003–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rajalingam R, Singal DP, Mehra NK Transporter associated with antigen-processing (TAP) genes and susceptibility to tuberculoid leprosy and pulmonary tuberculosis Tissue Antigens 1997 49 168–172

    Article  CAS  PubMed  Google Scholar 

  32. Blackwell JM, Black GF, Peacock CS et al Immunogenetics of leishmanial and mycobacterial infections: The Belém Family Study Phil Trans Roy Soc B 1997 352 1331–1345

    Article  CAS  Google Scholar 

  33. Lander E, Kruglyak L Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results Nat Genet 1995 11 241–247

    Article  CAS  PubMed  Google Scholar 

  34. Morton NE, Shields DC, Collins A Genetic epidemiology of complex phenotypes Ann Hum Genet 1991 55 301–314

    Article  CAS  PubMed  Google Scholar 

  35. Clerget-Darpoux F, Bonaiti Pellie C, Hochez J Effects of misspecifying genetic parameters in lod score analysis Biometrics 1986 42 393–399

    Article  CAS  PubMed  Google Scholar 

  36. Visentainer JEL, Tsuneto LT, Serra MF, Peixoto PRF, PetzlErler ML Association of leprosy with HLA-DR2 in a Southern Brazilian population Brazil J Med Biol Res 1997 30 51–59

    Article  CAS  Google Scholar 

  37. Zerva L, Cizman B, Mehr NK et al Arginine at positions 13 or 70–71 in pocket 4 of HLA-DRB1 alleles is associated with susceptibility to tuberculoid leprosy J Exp Med 1996 183 829–836

    Article  CAS  PubMed  Google Scholar 

  38. Yamamura M, Uyemura K, Deans RJ et al Defining protective responses to pathogens: Cytokine profiles in leprosy lesions Science 1991 254 277–279

    Article  CAS  PubMed  Google Scholar 

  39. Sieling PA, Modlin RL Cytokine patterns at the site of mycobacterial infection Immunobiology 1994 191 378–387

    Article  CAS  PubMed  Google Scholar 

  40. Yamamura M, Wang X-H, Ohmen JD et al Cytokine patterns of immunologically mediated tissue damage J Immunol 1992 149 1470–1475

    CAS  PubMed  Google Scholar 

  41. Khanolkar-Young S, Rayment N, Brickell PM et al Tumor-necrosis factor-alpha (TNF-α) synthesis is associated with the skin and peripheral-nerve pathology of leprosy reversal reactions Clin Exp Immunol 1995 99 196–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaplan G Cytokine regulation of disease progression in leprosy and tuberculosis Immunobiology 1994 191 564–568

    Article  CAS  PubMed  Google Scholar 

  43. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation Proc Natl Acad Sci USA 1997 94 3195–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brinkman BMN, Zuidjgeest D, Kaijzel EL, Breedveld FC, Verweij CL Relevance of the tumor necrosis factor alpha (TNFα) −308 polymorphism in TNFα gene regulation J Inflamm 1996 46 32–41

    CAS  Google Scholar 

  45. Louis E, Franchiment D, Piron A et al Tumour necrosis factor (TNF) gene polymorphism influences TNF-α production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans Clin Exp Immunol 1998 113 401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Knight JC, Uoalova I, Hill AVS et al A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria Nat Genet 1999 22 145–150

    Article  CAS  PubMed  Google Scholar 

  47. Wilson AG, di Giovine FS, Blakemore AIF, Duff GW Single base polymorphism in the human Tumour Necrosis Factor alpha (TNFα) gene detectable by Nco1 restriction of PCR product Hum Mol Genet 1993 1 353

    Article  Google Scholar 

  48. Shaw M-A, Atkinson S, Dockrell H et al An RFLP map for 2q33-q37 from multicase mycobacterial and leishmanial disease families: no evidence for an Lsh/Ity/Bcg gene homologue influencing susceptibility to leprosy Ann Hum Genet 1993 57 251–271

    Article  CAS  PubMed  Google Scholar 

  49. Wilson AG, de Vries N, Pociot F, di Giovine FS, van der Putte LBA, Duff GW An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles J Exp Med 1993 177 557–560

    Article  CAS  PubMed  Google Scholar 

  50. Messer G, Spengler U, Jung MC et al Polymorphic structure of the tumor necrosis factor (TNF) locus: an NcoI polymorphism in the first intron of the human TNF-β gene correlates with a variant amino acid in position 26 and a reduced level of TNF-β production J Exp Med 1991 173 209–219

    Article  CAS  PubMed  Google Scholar 

  51. Bidwell J Advances in DNA-based HLA-typing methods Immunol Today 1994 15 303–307

    Article  CAS  PubMed  Google Scholar 

  52. Kimura A, Sasazuki T Eleventh International Histocompatibility Workshop reference protocol for the HLA DNA-typing technique. In: Tsuji K (ed) HLA 1991 Oxford: OUP 1993 pp 397–419

    Google Scholar 

  53. Lundin KEA, Rønningen KS, Aono S et al HLA-DQ antigens and DQ-beta amino acid-57 of Japanese patients with insulin-dependent diabetes-mellitus – detection of a DRW8DQW8 haplotype Tissue Antigens 1989 34 233–241

    Article  CAS  PubMed  Google Scholar 

  54. Ronningen KS, Iwe T, Halstensen TS, Spurkland A, Thorsby E The amino acid at position-57 of the HLA-DQ-BETA chain and susceptibility to develop insulin-dependent diabetes-mellitus Hum Immunol 1989 26 215–225

    Article  CAS  PubMed  Google Scholar 

  55. Holmans P, Clayton D Efficiency of typing unaffected relatives in an affected sib-pair linkage study with single locus and multiple tightly-linked markers Am J Hum Genet 1995 37 1221–1232

    Google Scholar 

  56. Morton NE, Rao DC, Lalouel J-M Methods in Genetic Epidemiology Karger: Basel, Switzerland 1983

    Google Scholar 

  57. Shields DC, Collins A, Marlow A Coding of pointers in the segregation analysis program POINTER Genet Epidemiol 1994 11 385–387

    Article  CAS  PubMed  Google Scholar 

  58. Akaike H A new look at the statistical model identification IEEE Transactions on Automatic Control 1974 19 716–723

    Article  Google Scholar 

  59. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES Parametric and nonparametric linkage analysis: a unified multipoint approach Am J Hum Genet 1996 58 1347–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Spielman RS, McGinnis RE, Ewens WJ Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM) Am J Hum Genet 1993 52 506–516

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sham PC, Curtis D An extended transmission/disequilibrium test (TDT) for multi-allele marker loci Ann Hum Genet 1995 59 323–336

    Article  CAS  PubMed  Google Scholar 

  62. Curtis D, Sham PC A note on the application of the transmission disequilibrium test when a parent is missing Am J Hum Genet 1995 56 811–812

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ott J Analysis of Human Genetic Linkage The John Hopkins University Press: Baltimore, MD 1991 pp 245–246

Download references

Acknowledgements

We would like to thank the people of Belém for their contribution to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-A Shaw.

Additional information

This study was funded by a Wellcome Trust grant to JMB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, MA., Donaldson, I., Collins, A. et al. Association and linkage of leprosy phenotypes with HLA class II and tumour necrosis factor genes . Genes Immun 2, 196–204 (2001). https://doi.org/10.1038/sj.gene.6363754

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363754

Keywords

This article is cited by

Search

Quick links