Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Both risk alleles for FcγRIIA and FcγRIIIA are susceptibility factors for SLE: a unifying hypothesis

Abstract

The aim of this study was to analyze in families with SLE for the presence of linkage and the structure and transmission of haplotypes containing alleles for the low-affinity Fcγ receptors. The Fcγ receptor polymorphisms FcγRIIA-131R/H, FcγRIIIA-176F/V and FcγRIIIB-NA1/2 and a polymorphism in the FcγRIIB gene were genotyped with RFLP, allele-specific PCR or pyrosequencing. Individual SNPs and haplotypes were tested for linkage in multicase families and for association using contingency tables, transmission disequilibrium test and affected family-based control groups in Swedish and Mexican single-case families. No linkage or association could be detected using the FcγR polymorphisms in the multicase families. However, an association was found for both FcγRIIA-131R and IIIA-176F alleles in the single-case families, but not for IIIB or IIB. Allelic association to SLE was found for a haplotype that included both risk alleles, but not in haplotypes where only one or the other was present. We propose that FcγRIIA-131R and FcγRIIIA-176F are both risk alleles for SLE transmitted primarily, but not exclusively on a single major haplotype that behaves functionally in a situation similar to that of compound heterozygozity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hochberg MC . The application of genetic epidemiology to systemic lupus erythematosus. J Rheumatol 1987; 14: 867–869.

    CAS  PubMed  Google Scholar 

  2. Clark MR, Stuart SG, Kimberly RP, Ory PA, Goldstein IM . A single amino acid distinguishes the high-responder from the low-responder form of Fc receptor II on human monocytes. Eur J Immunol 1991; 21: 1911–1916.

    Article  CAS  PubMed  Google Scholar 

  3. de Haas M, Koene HR, Kleijer M et al. A triallelic Fc gamma receptor type IIIA polymorphism influences the binding of human IgG by NK cell Fc gamma RIIIa. J Immunol 1996; 156: 3948–3955.

    Google Scholar 

  4. Koene HR, de Haas M, Kleijer M, Roos D, von dem Borne AE . NA-phenotype-dependent differences in neutrophil Fc gamma RIIIb expression cause differences in plasma levels of soluble Fc gamma RIII. Br J Haematol 1996; 93: 235–241.

    Article  CAS  PubMed  Google Scholar 

  5. Warmerdam PA, Parren PW, Vlug A, Aarden LA, van de Winkel JG, Capel PJ . Polymorphism of the human Fc gamma receptor II (CD32): molecular basis and functional aspects. Immunobiology 1992; 185: 175–182.

    Article  CAS  PubMed  Google Scholar 

  6. Wu J, Edberg JC, Redecha PB et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 1997; 100: 1059–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M . Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 1997; 90: 1109–1114.

    CAS  PubMed  Google Scholar 

  8. Davies KA, Peters AM, Beynon HL, Walport MJ . Immune complex processing in patients with systemic lupus erythematosus. In vivo imaging and clearance studies. J Clin Invest 1992; 90: 2075–2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salmon JE, Edberg JC, Kimberly RP . Fc gamma receptor III on human neutrophils. Allelic variants have functionally distinct capacities. J Clin Invest 1990; 85: 1287–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y . Fcgamma Receptor gene polymorphisms in Japanese patients with sustemic lupus erythematosus. Arthritis Rheum 2002; 46: 1242–1254.

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez-Escribano MF, Aguilar F, Sanchez-Roman J, Nunez-Roldan A . FcgRIIA, FcgammaRIIIA and FcgammaRIIIB polymorphisms in Spanish patients with systemic lupus erythematosus. Eur J Immunogenet 2002; 29: 301–306.

    Article  CAS  PubMed  Google Scholar 

  12. Zuniga R, Ng S, Peterson MG et al. Low-binding alleles of Fcgamma receptor types IIA and IIIA are inherited independently and are associated with systemic lupus erythematosus in Hispanic patients. Arthritis Rheum 2001; 44: 361–367.

    Article  CAS  PubMed  Google Scholar 

  13. Edberg JC, Langefeld CD, Wu J et al. Genetic linkage and association of Fcg receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis Rheum 2002; 46: 2132–2140.

    Article  CAS  PubMed  Google Scholar 

  14. Johanneson B, Lima G, Von Salome J, Alarcon-Segovia D, Alarcon-Riquelme ME . A major susceptibility locus for systemic lupus erythemathosus maps to chromosome 1q31. Am J Hum Genet 2002; 71: 1060–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koene HR, Kleijer M, Roos D, de Haas M, Von dem Borne AE . Fc gamma RIIIB gene duplication: evidence for presence and expression of three distinct Fc gamma RIIIB genes in NA(1+,2+)SH(+) individuals. Blood 1998; 91: 673–679.

    CAS  PubMed  Google Scholar 

  16. Gittinger FS, Schindler-Wuepper L, Kissel K, Bux J . Quantitative determination of Fcgamma receptor genes by means of fluorescence-based real-time polymerase chain reaction. Tissue Antigens 2002; 60: 64–70.

    Article  CAS  PubMed  Google Scholar 

  17. Salmon JE, Millard S, Schachter LA et al. Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 1996; 97: 1348–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duits AJ, Bootsma H, Derksen RH et al. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum 1995; 38: 1832–1836.

    Article  CAS  PubMed  Google Scholar 

  19. Karassa FB, Trikalinos TA, Ioannidis JP . Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum 2002; 46: 1563–1571.

    Article  CAS  PubMed  Google Scholar 

  20. Norsworthy P, Theodoridis E, Botto M et al. Overrepresentation of the Fcgamma receptor type IIA R131/R131 genotype in Caucasoid systemic lupus erythematosus patients with autoantibodies to C1q and glomerulonephritis. Arthritis Rheum 1999; 42: 1828–1832.

    Article  CAS  PubMed  Google Scholar 

  21. Magnusson V, Zunec R, Odeberg J et al. Polymorphisms of FcγRIIB gene are not associated with SLE in the Swedish population. Arthritis Rheum 2004, (In Press).

  22. Tan EM, Cohen AS, Fries JF et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang XM, Arepally G, Poncz M, McKenzie SE . Rapid detection of the Fc gamma RIIA-H/R 131 ligand-binding polymorphism using an allele-specific restriction enzyme digestion (ASRED). J Immunol Methods 1996; 199: 55–59.

    Article  CAS  PubMed  Google Scholar 

  24. Hessner MJ, Curtis BR, Endean DJ, Aster RH . Determination of neutrophil antigen gene frequencies in five ethnic groups by polymerase chain reaction with sequence-specific primers. Transfusion 1996; 36: 895–899.

    Article  CAS  PubMed  Google Scholar 

  25. Terwilliger JD . A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am J Hum Genet 1995; 56: 777–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schaffer AA, Gupta SK, Shriram K, Cottingham Jr RW . Avoiding recomputation in linkage analysis. Hum Hered 1994; 44: 225–237.

    Article  CAS  PubMed  Google Scholar 

  27. Cottingham Jr RW, Idury RM, Schaffer AA . Faster sequential genetic linkage computations. Am J Hum Genet 1993; 53: 252–263.

    PubMed  PubMed Central  Google Scholar 

  28. Thomson G . Mapping disease genes: family-based association studies. Am J Hum Genet 1995; 57: 487–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Svejgaard A, Ryder LP . HLA and disease associations: detecting the strongest association. Tissue Antigens 1994; 43: 18–27.

    Article  CAS  PubMed  Google Scholar 

  30. Haldane JB . The estimation and significance of the logarithm of a ratio of frequencies. Ann Hum Genet 1956; 20: 309–311.

    Article  CAS  PubMed  Google Scholar 

  31. Woolf B . On estimating the relation between blood groups and disease. Ann Hum Genet 1955; 19: 251–253.

    Article  CAS  PubMed  Google Scholar 

  32. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support given by Kicki Holmberg from KTH Genome Center. The Wallenberg Consortium North supported genotyping at the KTH Genome Center. All microsatellite genotyping was performed at the Uppsala Genotyping Center supported by the Swedish Foundation for Strategic Research. This work was supported by grants from the Swedish Science Council (12673), the Gustaf V: 80th-year Jubilee Foundation, the Swedish Association against Rheumatism and the Börje Dahlins Foundation.

The members of Collaborative Group on the Genetics of SLE who have provided samples for the multiplex families are: Antonio Iglesias, Eduardo Egea and Gloria Egea (Colombia); Ignacio García de la Torre (Mexico); Ralph Williams Jr (USA); Kok-Yok Fong (Singapore); Mauro Galeazzi, Sergio Milgiarese, Domenico Sebastiani and Ornella de Pitá (Italy); K Boki, Maria Kastorida and Haralampos Moutsopoulos (Greece); Helga Kristjansdottir, Kristján Steinsson and Gerdur Gröndal (Iceland); Roland Jonsson and Anne-Isine Bolstad (Norway); Elisabet Svennungsson, Iva Gunnarsson, Gunnar Sturfelt and Lennart Truedsson (Sweden) and Caroline Gordon (UK).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M E Alarcón-Riquelme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnusson, V., Johanneson, B., Lima, G. et al. Both risk alleles for FcγRIIA and FcγRIIIA are susceptibility factors for SLE: a unifying hypothesis. Genes Immun 5, 130–137 (2004). https://doi.org/10.1038/sj.gene.6364052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364052

Keywords

This article is cited by

Search

Quick links