Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Family-based association analysis implicates IL-4 in susceptibility to Kawasaki disease

Abstract

Several compelling lines of evidence suggest an important influence of genetic variation in susceptibility to Kawasaki disease (KD), an acute vasculitis that causes coronary artery aneurysms in children. We performed a family-based genotyping study to test for association between KD and 58 genes involved in cardiovascular disease and inflammation. By analysis of a cohort of 209 KD trios using the transmission disequilibrium test, we documented the asymmetric transmission of five alleles including the interleukin-4 (IL-4) C(589)T allele (P=0.03). Asymmetric transmission of the IL-4 C(589)T was replicated in a second, independent cohort of 60 trios (P=0.05, combined P=0.002). Haplotypes of alleles in IL-4, colony-stimulating factor 2 (CSF2), IL-13, and transcription factor 7 (TCF7), all located in the interleukin gene cluster on 5q31, were also asymmetrically transmitted. The reported associations of KD with atopic dermatitis and allergy, elevated serum IgE levels, eosinophilia, and increased circulating numbers of monocyte/macrophages expressing the low-affinity IgE receptor (FCɛR2) may be related to effects of IL-4. Thus, the largest family-based genotyping study of KD patients to date suggests that genetic variation in the IL-4 gene, or regions linked to IL-4, plays an important role in KD pathogenesis and disease susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H . A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 1974; 54: 271–276.

    CAS  PubMed  Google Scholar 

  2. Taubert KA, Rowley AH, Shulman ST . Seven-year national survey of Kawasaki disease and acute rheumatic fever. Pediatr Infect Dis J 1994; 13: 704–708.

    Article  CAS  PubMed  Google Scholar 

  3. Kato H, Sugimura T, Akagi T et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 1996; 94: 1379–1385.

    Article  CAS  PubMed  Google Scholar 

  4. Kawasaki T . Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi 1967; 16: 178–222.

    CAS  PubMed  Google Scholar 

  5. Burns JC . Commentary: translation of Dr Tomisaku Kawasaki's original report of fifty patients in 1967. ArticlePlus. Pediatr Infect Dis J 2002; 21: 993–995.

    Article  PubMed  Google Scholar 

  6. Burns JC, Glode MP . Kawasaki syndrome. Lancet 2004; 364: 533–544.

    Article  PubMed  Google Scholar 

  7. Morens DM, O'Brien RJ . Kawasaki disease in the United States. J Infect Dis 1978; 137: 91–93.

    Article  CAS  PubMed  Google Scholar 

  8. Shulman ST, McAuley JB, Pachman LM, Miller ML, Ruschhaupt DG . Risk of coronary abnormalities due to Kawasaki disease in urban area with small Asian population. Am J Dis Child 1987; 141: 420–425.

    CAS  PubMed  Google Scholar 

  9. Holman RC, Curns AT, Belay ED, Steiner CA, Schonberger LB . Kawasaki syndrome hospitalizations in the United States, 1997 and 2000. Pediatrics 2003; 112: 495–501.

    Article  PubMed  Google Scholar 

  10. Burns JC, Kushner HI, Bastian JF . Kawasaki disease: a brief history. Pediatrics 2000; 106: E27.

    Article  CAS  PubMed  Google Scholar 

  11. Burns JC, Cayan DR, Tong G et al. Seasonality and temporal clustering of Kawasaki Syndrome in Japan, 1987–2000. Epidemiology 2005; 16: 220–225.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bronstein DE, Dille AN, Austin JP, Williams CM, Palinkas LA, Burns JC . Relationship of climate, ethnicity and socioeconomic status to Kawasaki disease in San Diego County, 1994 through 1998. Pediatr Infect Dis J 2000; 19: 1087–1091.

    Article  CAS  PubMed  Google Scholar 

  13. Hirata S, Nakamura Y, Yanagawa H . Incidence rate of recurrent Kawasaki disease and related risk factors: from the results of nationwide surveys of Kawasaki disease in Japan. Acta Paediatr 2001; 90: 40–44.

    Article  CAS  PubMed  Google Scholar 

  14. Uehara R, Yashiro M, Nakamura Y, Yanagawa H . Kawasaki disease in parents and children. Acta Paediatr 2003; 92: 694–697.

    Article  CAS  PubMed  Google Scholar 

  15. Takeuchi K, Yamamoto K, Kataoka S et al. High incidence of angiotensin I converting enzyme genotype II in Kawasaki disease patients with coronary aneurysm. Eur J Pediatr 1997; 156: 266–268.

    Article  CAS  PubMed  Google Scholar 

  16. Quasney MW, Bronstein DE, Cantor RM et al. Increased frequency of alleles associated with elevated tumor necrosis factor-alpha levels in children with Kawasaki disease. Pediatr Res 2001; 49: 686–690.

    Article  CAS  PubMed  Google Scholar 

  17. Ouchi K, Suzuki Y, Shirakawa T, Kishi F . Polymorphism of SLC11A1 (formerly NRAMP1) gene confers susceptibility to Kawasaki disease. J Infect Dis 2003; 187: 326–329.

    Article  CAS  PubMed  Google Scholar 

  18. Nishimura S, Zaitsu M, Hara M et al. A polymorphism in the promoter of the CD14 gene (CD14/−159) is associated with the development of coronary artery lesions in patients with Kawasaki disease. J Pediatr 2003; 143: 357–362.

    Article  CAS  PubMed  Google Scholar 

  19. Jibiki T, Terai M, Shima M et al. Monocyte chemoattractant protein 1 gene regulatory region polymorphism and serum levels of monocyte chemoattractant protein 1 in Japanese patients with Kawasaki disease. Arthritis Rheum 2001; 44: 2211–2212.

    Article  CAS  PubMed  Google Scholar 

  20. Biezeveld MH, Kuipers IM, Geissler J et al. Association of mannose-binding lectin genotype with cardiovascular abnormalities in Kawasaki disease. Lancet 2003; 361: 1268–1270.

    Article  CAS  PubMed  Google Scholar 

  21. Onouchi Y, Onoue S, Tamari M et al. CD40 ligand gene and Kawasaki disease. Eur J Hum Genet 2004; 12: 1062–1068.

    Article  CAS  PubMed  Google Scholar 

  22. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES . High-resolution haplotype structure in the human genome. Nat Genet 2001; 29: 229–232.

    Article  CAS  PubMed  Google Scholar 

  24. Li-Weber M, Krammer PH . Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nat Rev Immunol 2003; 3: 534–543.

    Article  CAS  PubMed  Google Scholar 

  25. Hirao J, Hibi S, Andoh T, Ichimura T . High levels of circulating interleukin-4 and interleukin-10 in Kawasaki disease. Int Arch Allergy Immunol 1997; 112: 152–156.

    Article  CAS  PubMed  Google Scholar 

  26. Matsubara T, Katayama K, Matsuoka T, Fujiwara M, Koga M, Furukawa S . Decreased interferon-gamma (IFN-gamma)-producing T cells in patients with acute Kawasaki disease. Clin Exp Immunol 1999; 116: 554–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spiegelberg HL . Structure and function of Fc receptors for IgE on lymphocytes, monocytes, and macrophages. Adv Immunol 1984; 35: 61–88.

    Article  CAS  PubMed  Google Scholar 

  28. Furukawa S, Matsubara T, Motohashi T et al. Increased expression of Fc epsilon R2/CD23 on peripheral blood B lymphocytes and serum IgE levels in Kawasaki disease. Int Arch Allergy Appl Immunol 1991; 95: 7–12.

    Article  CAS  PubMed  Google Scholar 

  29. Furukawa S, Matsubara T, Motohashi T et al. Expression of Fc epsilon R2/CD23 on peripheral blood macrophages/monocytes in Kawasaki disease. Clin Immunol Immunopathol 1990; 56: 280–286.

    Article  CAS  PubMed  Google Scholar 

  30. Matsubara T, Furukawa S, Motohashi T, Okumura K, Yabuta K . Soluble CD23 antigen in Kawasaki disease and other acute febrile illnesses. Eur J Pediatr 1995; 154: 826–829.

    Article  CAS  PubMed  Google Scholar 

  31. Nash MC, Shah V, Dillon MJ . Soluble cell adhesion molecules and von Willebrand factor in children with Kawasaki disease. Clin Exp Immunol 1995; 101: 13–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takeshita S, Dobashi H, Nakatani K et al. Circulating soluble selectins in Kawasaki disease. Clin Exp Immunol 1997; 108: 446–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miura M, Garcia FL, Crawford SE, Rowley AH . Cell adhesion molecule expression in coronary artery aneurysms in acute Kawasaki disease. Pediatr Inf Dis J 2004; 23: 931–936.

    Article  Google Scholar 

  34. Kabesch M, Tzotcheva I, Carr D et al. A complete screening of the IL4 gene: novel polymorphisms and their association with asthma and IgE in childhood. J Allergy Clin Immunol 2003; 112: 893–898.

    Article  CAS  PubMed  Google Scholar 

  35. Marsh DG, Neely JD, Breazeale DR et al. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 1994; 264: 1152–1156.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu S, Chan-Yeung M, Becker AB et al. Polymorphisms of the IL-4, TNF-alpha, and Fcepsilon RIbeta genes and the risk of allergic disorders in at-risk infants. Am J Respir Crit Care Med 2000; 161: 1655–1659.

    Article  CAS  PubMed  Google Scholar 

  37. Kawashima T, Noguchi E, Arinami T et al. Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families. J Med Genet 1998; 35: 502–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sandford AJ, Chagani T, Zhu S . Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J Allergy Clin Immunol. 2000; 106: 135–140.

    Article  CAS  PubMed  Google Scholar 

  39. Choi EH, Lee HJ, Yoo T, Chanock SJ . A common haplotype of interleukin-4 gene IL4 is associated with severe respiratory syncytial virus disease in Korean children. J Infect Dis 2002; 186: 1207–1211.

    Article  CAS  PubMed  Google Scholar 

  40. Kusakawa S, Heiner DC . Elevated levels of immunoglobulin E in the acute febrile mucocutaneous lymph node syndrome. Pediatr Res 1976; 10: 108–111.

    Article  CAS  PubMed  Google Scholar 

  41. Hirao J, Yoshimura N, Homma N, Kano K . Immunological studies on Kawasaki disease: II. Isolation and characterization of an immunosuppressive factor in acute phase sera. Clin Exp Immunol 1987; 67: 433–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin CY, Hwang B . Serial immunologic studies in patients with mucocutaneous lymph node syndrome (Kawasaki disease). Ann Allergy 1987; 59: 291–297.

    CAS  PubMed  Google Scholar 

  43. Krous HF, Clausen CR, Ray CG . Elevated immunoglobulin E in infantile polyarteritis nodosa. J Pediatr 1974; 84: 841–845.

    Article  CAS  PubMed  Google Scholar 

  44. Landing BH, Larson EJ . Are infantile periarteritis nodosa with coronary artery involvement and fatal mucocutaneous lymph node syndrome the same? Comparison of 20 patients from North America with patients from Hawaii and Japan. Pediatrics 1977; 59: 651–662.

    CAS  PubMed  Google Scholar 

  45. Matsubara T, Fujita Y, Sato T, Sasai K, Furukawa S . The prevalence of allergy in Kawasaki disease. Allergy 1998; 53: 815–816.

    Article  CAS  PubMed  Google Scholar 

  46. Matsuoka S, Tatara K, Nakagawa R, Mori K, Kuroda Y . Tendency toward atopy in Kawasaki disease. Eur J Pediatr 1997; 156: 30–32.

    Article  CAS  PubMed  Google Scholar 

  47. Brosius CL, Newburger JW, Burns JC, Hojnowski-Diaz P, Zierler S, Leung DY . Increased prevalence of atopic dermatitis in Kawasaki disease. Pediatr Infect Dis J 1988; 7: 863–866.

    Article  CAS  PubMed  Google Scholar 

  48. Rosenwasser LJ, Klemm DJ, Dresback JK et al. Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin Exp Allergy. 1995; 25 (Suppl 2): 74–78; discussion 95–96.

    Article  PubMed  Google Scholar 

  49. Newburger JW, Takahashi M, Gerber MA et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 2004; 110: 2747–2771.

    Article  PubMed  Google Scholar 

  50. de Zorzi A, Colan SD, Gauvreau K, Baker AL, Sundel RP, Newburger JW . Coronary artery dimensions may be misclassified as normal in Kawasaki disease. J Pediatr 1998; 133: 254–258.

    Article  CAS  PubMed  Google Scholar 

  51. Heath EM, Morken NW, Campbell KA, Tkach D, Boyd EA, Strom DA . Use of buccal cells collected in mouthwash as a source of DNA for clinical testing. Arch Pathol Lab Med 2001; 125: 127–133.

    CAS  PubMed  Google Scholar 

  52. Cheng S, Grow MA, Pallaud C et al. A multilocus genotyping assay for candidate markers of cardiovascular disease risk. Genome Res 1999; 9: 936–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zee RY, Hoh J, Cheng S et al. Multi-locus interactions predict risk for post-PTCA restenosis: an approach to the genetic analysis of common complex disease. Pharmacogenomics J 2002; 2: 197–201.

    Article  CAS  PubMed  Google Scholar 

  54. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lange K, Cantor RM, Horvath S et al. Mendel version 4.0: a complete package for the exact genetic analysis of discrete traits in pedigree and population data sets. Am J Hum Genet 2001; 69 (Suppl): A1886.

    Google Scholar 

  56. SAGE. Statistical Analysis for Genetic Epidemiology. Computer program package available from Statistical Solutions Ltd, Cork, Ireland, 2002.

  57. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

  58. Clayton D . TRANSMIT, 2.5.4 edn. Cambridge: MRC Biostatistics Unit, 1999.

    Google Scholar 

  59. Cytel . StatXact software for exact nonparametric inference. Cambridge, MA: Cytel Software Corporation, 1997.

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health, NIH-RO1HL69413 and K24HL074864 (awarded to JCB) and by a Grant-in-Aid from the American Heart Association, Western Affiliate #035061Y (awarded to JCB). Some of the results of this paper were obtained by using the program package SAGE which is supported by a US Public Health Service Resource Grant (RR03655) from the National Center for Research Resources. We thank John F Bastian for patient referral and collection of DNA samples. We also thank our clinical nurses Ellen McGrath, and Jennifer Foley, and the army of students including David Bronstein, Jennie Buchanan, Marina Dergun, Christina Lin, Erin Miller, and Mathew Leach without whose help we could never have collected all the DNA samples required for this study. We also thank Calvin Mano, Tracy Nguyen, and Nang Tan (RMS) for their support in producing the genotyping reagents, and Jeff Post (RMS) for the strip interpretation software used for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Burns.

Additional information

Electronic Database Information

Online Mendelian Inheritance in Man (OMIM): http://www.ncbi.nlm.nkh.gov/Omim/.

Supplementary information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, J., Shimizu, C., Shike, H. et al. Family-based association analysis implicates IL-4 in susceptibility to Kawasaki disease. Genes Immun 6, 438–444 (2005). https://doi.org/10.1038/sj.gene.6364225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364225

Keywords

This article is cited by

Search

Quick links