Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A compass that points to lupus: genetic studies on type I interferon pathway

Abstract

It was more than 20 years ago that patients with systemic lupus erythematosus (SLE) were first reported to display elevated serum levels of type I interferon (IFN). Since then, extensive studies revealed a crucial role for type I IFN in SLE pathogenesis. The current model proposes that small increase of type I IFN production by plasmacytoid dendritic cells (pDCs) is sufficient to induce unabated activation of immature peripheral DCs. IFN-matured DCs select and activate autoreactive T cells and B cells, rather than deleting them, resulting in peripheral tolerance breakdown, a characteristic feature of SLE. Furthermore, immune complexes provide an amplification loop to pDCs for further IFN production. In the past 5 years, high-throughput technologies such as expression profiling and single-nucleotide polymorphism (SNP) typing established the role of altered type I IFN system in SLE, and a detailed picture of its molecular mechanisms is beginning to emerge. In this review, we discuss two major lines of genetics studies on type I IFN pathway related to human SLE: (1) expression profiling of IFN-responsive genes and (2) disease-associated SNPs of IFN-related genes, especially IRF5 (IFN-regulatory factor 5). Lastly, we discuss how such genetic alterations in type I IFN pathway fit in the current model of SLE pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL . Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 1979; 301: 5–8.

    CAS  PubMed  Google Scholar 

  2. Ytterberg SR, Schnitzer TJ . Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum 1982; 25: 401–406.

    CAS  PubMed  Google Scholar 

  3. Preble OT, Black RJ, Friedman RM, Klippel JH, Vilcek J . Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science 1982; 216: 429–431.

    CAS  PubMed  Google Scholar 

  4. Bengtsson AA, Sturfelt G, Truedsson L, Blomberg J, Alm G, Vallin H et al. Activation of type I interferon system in systemic lupus erythematosus correlates with disease activity but not with antiretroviral antibodies. Lupus 2000; 9: 664–671.

    CAS  PubMed  Google Scholar 

  5. Kalkner KM, Ronnblom L, Karlsson Parra AK, Bengtsson M, Olsson Y, Oberg K . Antibodies against double-stranded DNA and development of polymyositis during treatment with interferon. QJM 1998; 91: 393–399.

    CAS  PubMed  Google Scholar 

  6. Ronnblom LE, Alm GV, Oberg K . Autoimmune phenomena in patients with malignant carcinoid tumors during interferon-alpha treatment. Acta Oncol 1991; 30: 537–540.

    CAS  PubMed  Google Scholar 

  7. Gota C, Calabrese L . Induction of clinical autoimmune disease by therapeutic interferon-alpha. Autoimmunity 2003; 36: 511–518.

    PubMed  Google Scholar 

  8. Kyogoku C, Langefeld CD, Ortmann WA, Lee A, Selby S, Carlton VE et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004; 75: 504–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Alarcon-Riquelme ME . A RUNX trio with a taste for autoimmunity. Nat Genet 2003; 35: 299–300.

    CAS  PubMed  Google Scholar 

  10. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003; 100: 2610–2615.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003; 197: 711–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirou KA, Lee C, George S, Louca K, Papagiannis IG, Peterson MG et al. Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus. Arthritis Rheum 2004; 50: 3958–3967.

    CAS  PubMed  Google Scholar 

  13. Bauer JW, Baechler EC, Petri M, Batliwalla FM, Crawford D, Ortmann WA et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med 2006; 3: e491.

    PubMed  PubMed Central  Google Scholar 

  14. Isaacs A, Lindenmann J . Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957; 147: 258–267.

    CAS  PubMed  Google Scholar 

  15. Theofilopoulos AN, Baccala R, Beutler B, Kono DH . Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 2005; 23: 307–336.

    CAS  PubMed  Google Scholar 

  16. Stewart TA . Neutralizing interferon alpha as a therapeutic approach to autoimmune diseases. Cytokine Growth Factor Rev 2003; 14: 139–154.

    CAS  PubMed  Google Scholar 

  17. Aaronson DS, Horvath CM . A road map for those who don't know JAK-STAT. Science 2002; 296: 1653–1655.

    CAS  PubMed  Google Scholar 

  18. Perniok A, Wedekind F, Herrmann M, Specker C, Schneider M . High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus 1998; 7: 113–118.

    CAS  PubMed  Google Scholar 

  19. Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR . Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 1998; 41: 1241–1250.

    CAS  PubMed  Google Scholar 

  20. Casciola-Rosen LA, Anhalt G, Rosen A . Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 1994; 179: 1317–1330.

    CAS  PubMed  Google Scholar 

  21. Vallin H, Blomberg S, Alm GV, Cederblad B, Ronnblom L . Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-alpha (IFN-alpha) production acting on leucocytes resembling immature dendritic cells. Clin Exp Immunol 1999; 115: 196–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vallin H, Perers A, Alm GV, Ronnblom L . Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol 1999; 163: 6306–6313.

    CAS  PubMed  Google Scholar 

  23. Bave U, Alm GV, Ronnblom L . The combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J Immunol 2000; 165: 3519–3526.

    CAS  PubMed  Google Scholar 

  24. Bave U, Vallin H, Alm GV, Ronnblom L . Activation of natural interferon-alpha producing cells by apoptotic U937 cells combined with lupus IgG and its regulation by cytokines. J Autoimmun 2001; 17: 71–80.

    CAS  PubMed  Google Scholar 

  25. Magnusson M, Magnusson S, Vallin H, Ronnblom L, Alm GV . Importance of CpG dinucleotides in activation of natural IFN-alpha-producing cells by a lupus-related oligodeoxynucleotide. Scand J Immunol 2001; 54: 543–550.

    CAS  PubMed  Google Scholar 

  26. Ronnblom L, Alm GV . A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med 2001; 194: F59–F63.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bave U, Magnusson M, Eloranta ML, Perers A, Alm GV, Ronnblom L . Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 2003; 171: 3296–3302.

    CAS  PubMed  Google Scholar 

  28. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J . Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003; 19: 225–234.

    CAS  PubMed  Google Scholar 

  29. Medzhitov R, Preston-Hurlburt P, Janeway Jr CA . A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394–397.

    CAS  PubMed  Google Scholar 

  30. Kawai T, Akira S . TLR signaling. Cell Death Differ 2006; 13: 816–825.

    CAS  PubMed  Google Scholar 

  31. Kawai T, Akira S . Innate immune recognition of viral infection. Nat Immunol 2006; 7: 131–137.

    CAS  PubMed  Google Scholar 

  32. Iwasaki A, Medzhitov R . Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5: 987–995.

    CAS  PubMed  Google Scholar 

  33. Liu YJ . IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005; 23: 275–306.

    CAS  PubMed  Google Scholar 

  34. Colonna M, Trinchieri G, Liu YJ . Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 5: 1219–1226.

    CAS  PubMed  Google Scholar 

  35. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303: 1526–1529.

    CAS  PubMed  Google Scholar 

  36. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    CAS  PubMed  Google Scholar 

  37. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A . Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002; 416: 603–607.

    CAS  PubMed  Google Scholar 

  38. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002; 168: 4531–4537.

    CAS  PubMed  Google Scholar 

  39. Reeves JP, Taurog JD, Steinberg AD . Polyclonal B-cell activation of autoantibodies (CBA/N x NZB)F1 mice by polyinosinic polycytidylic acid. Clin Immunol Immunopathol 1981; 19: 170–180.

    CAS  PubMed  Google Scholar 

  40. Santiago-Raber ML, Baccala R, Haraldsson KM, Choubey D, Stewart TA, Kono DH et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 2003; 197: 777–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Braun D, Geraldes P, Demengeot J . Type I Interferon controls the onset and severity of autoimmune manifestations in lpr mice. J Autoimmun 2003; 20: 15–25.

    CAS  PubMed  Google Scholar 

  42. Kono DH, Baccala R, Theofilopoulos AN . Inhibition of lupus by genetic alteration of the interferon-alpha/beta receptor. Autoimmunity 2003; 36: 503–510.

    CAS  PubMed  Google Scholar 

  43. Nicoletti F, Di Marco R, Zaccone P, Xiang M, Magro G, Grasso S et al. Dichotomic effects of IFN-gamma on the development of systemic lupus erythematosus-like syndrome in MRL-lpr/lpr mice. Eur J Immunol 2000; 30: 438–447.

    CAS  PubMed  Google Scholar 

  44. Richards HB, Satoh M, Jennette JC, Croker BP, Yoshida H, Reeves WH . Interferon-gamma is required for lupus nephritis in mice treated with the hydrocarbon oil pristane. Kidney Int 2001; 60: 2173–2180.

    CAS  PubMed  Google Scholar 

  45. Lawson BR, Prud'homme GJ, Chang Y, Gardner HA, Kuan J, Kono DH et al. Treatment of murine lupus with cDNA encoding IFN-gammaR/Fc. J Clin Invest 2000; 106: 207–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK . Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 2005; 52: 1491–1503.

    CAS  PubMed  Google Scholar 

  47. Rozzo SJ, Allard JD, Choubey D, Vyse TJ, Izui S, Peltz G et al. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 2001; 15: 435–443.

    CAS  PubMed  Google Scholar 

  48. Min W, Ghosh S, Lengyel P . The interferon-inducible p202 protein as a modulator of transcription: inhibition of NF-kappa B, c-Fos, and c-Jun activities. Mol Cell Biol 1996; 16: 359–368.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Han GM, Chen SL, Shen N, Ye S, Bao CD, Gu YY . Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun 2003; 4: 177–186.

    CAS  PubMed  Google Scholar 

  50. Crow MK, Wohlgemuth J . Microarray analysis of gene expression in lupus. Arthritis Res Ther 2003; 5: 279–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye S, Pang H, Gu YY, Hua J, Chen XG, Bao CD et al. Protein interaction for an interferon-inducible systemic lupus associated gene, IFIT1. Rheumatology 2003; 42: 1155–1163.

    CAS  PubMed  Google Scholar 

  52. Baechler EC, Batliwalla FM, Reed AM, Peterson EJ, Gaffney PM, Moser KL et al. Gene expression profiling in human autoimmunity. Immunol Rev 2006; 210: 120–137.

    CAS  PubMed  Google Scholar 

  53. Baechler EC, Gregersen PK, Behrens TW . The emerging role of interferon in human systemic lupus erythematosus. Curr Opin Immunol 2004; 16: 801–807.

    CAS  PubMed  Google Scholar 

  54. Shao W, Zhou Z, Laroche I, Lu H, Zong Q, Patel DD et al. Optimization of rolling-circle amplified protein microarrays for multiplexed protein profiling. J Biomed Biotechnol 2003; 2003: 299–307.

    PubMed  PubMed Central  Google Scholar 

  55. Perlee L, Christiansen J, Dondero R, Grimwade B, Lejnine S, Mullenix M et al. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics. Proteome Sci 2004; 2: 9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH . Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum 1992; 35: 630–640.

    CAS  PubMed  Google Scholar 

  57. Liang MH, Socher SA, Larson MG, Schur PH . Reliability and validity of six systems for the clinical assessment of disease activity in systemic lupus erythematosus. Arthritis Rheum 1989; 32: 1107–1118.

    CAS  PubMed  Google Scholar 

  58. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666–669.

    CAS  PubMed  Google Scholar 

  59. Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y, Kato H, Yamaguchi A et al. Fcg receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 2002; 46: 1242–1254.

    CAS  PubMed  Google Scholar 

  60. Tsuchiya N, Kyogoku C . Role of Fcg receptor IIb polymorphism in the genetic background of systemic lupus erythematosus: insights from Asia. Autoimmunity 2005; 38: 347–352.

    CAS  PubMed  Google Scholar 

  61. Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K et al. FcgRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet 2005; 14: 2881–2892.

    CAS  PubMed  Google Scholar 

  62. Tsuchiya N, Honda Z, Tokunaga K . Role of B cell inhibitory receptor polymorphisms in systemic lupus erythematosus: a negative times a negative makes a positive. J Hum Genet 2006; 51: 741–750.

    PubMed  Google Scholar 

  63. Wu H, Boackle SA, Hanvivadhanakul P, Ulgiati D, Grossman JM, Lee Y et al. Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc Natl Acad Sci USA 2007; 104: 3961–3966.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, Sturfelt G et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 2005; 76: 528–537.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Decker T, Stockinger S, Karaghiosoff M, Muller M, Kovarik P . IFNs and STATs in innate immunity to microorganisms. J Clin Invest 2002; 109: 1271–1277.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Honda K, Taniguchi T . IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 2006; 6: 644–658.

    CAS  PubMed  Google Scholar 

  67. Barnes BJ, Moore PA, Pitha PM . Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem 2001; 276: 23382–23390.

    CAS  PubMed  Google Scholar 

  68. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N . IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19: 623–655.

    CAS  PubMed  Google Scholar 

  69. Izaguirre A, Barnes BJ, Amrute S, Yeow WS, Megjugorac N, Dai J et al. Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leukocyte Biol 2003; 74: 1125–1138.

    CAS  PubMed  Google Scholar 

  70. Mancl ME, Hu G, Sangster-Guity N, Olshalsky SL, Hoops K, Fitzgerald-Bocarsly P et al. Two discrete promoters regulate the alternatively spliced human interferon regulatory factor-5 isoforms. Multiple isoforms with distinct cell type-specific expression, localization, regulation, and function. J Biol Chem 2005; 280: 21078–21090.

    CAS  PubMed  Google Scholar 

  71. Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD . Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 2005; 115: 407–417.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 2005; 202: 1131–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Boule MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR . Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 2004; 199: 1631–1640.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Honda K, Yanai H, Takaoka A, Taniguchi T . Regulation of the type I IFN induction: a current view. Int Immunol 2005; 17: 1367–1378.

    CAS  PubMed  Google Scholar 

  75. Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci USA 2005; 102: 15989–15994.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Barnes BJ, Kellum MJ, Field AE, Pitha PM . Multiple regulatory domains of IRF-5 control activation, cellular localization, and induction of chemokines that mediate recruitment of T lymphocytes. Mol Cell Biol 2002; 22: 5721–5740.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM et al. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 2005; 280: 17005–17012.

    CAS  PubMed  Google Scholar 

  78. Barnes BJ, Field AE, Pitha-Rowe PM . Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome in vivo and transcriptional activity of IFNA genes. J Biol Chem 2003; 278: 16630–16641.

    CAS  PubMed  Google Scholar 

  79. Barnes BJ, Richards J, Mancl M, Hanash S, Beretta L, Pitha PM . Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J Biol Chem 2004; 279: 45194–45207.

    CAS  PubMed  Google Scholar 

  80. Bolland S, Ravetch JV . Spontaneous autoimmune disease in FcgRIIB-deficient mice results from strain-specific epistasis. Immunity 2000; 13: 277–285.

    CAS  PubMed  Google Scholar 

  81. Bolland S, Yim YS, Tus K, Wakeland EK, Ravetch JV . Genetic modifiers of systemic lupus erythematosus in FcgRIIB(−/−) mice. J Exp Med 2002; 195: 1167–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Murphy ED, Roths JB . A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum 1979; 22: 1188–1194.

    CAS  PubMed  Google Scholar 

  83. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S . Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006; 312: 1669–1672.

    CAS  PubMed  Google Scholar 

  84. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 2006; 103: 9970–9975.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005; 434: 243–249.

    CAS  PubMed  Google Scholar 

  86. Yanai H, Chen HM, Inuzuka T, Kondo S, Mak TW, Takaoka A et al. Role of IFN regulatory factor 5 transcription factor in antiviral immunity and tumor suppression. Proc Natl Acad Sci USA 2007; 104: 3402–3407.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Graham RR, Kozyrev SV, Baechler EC, Reddy MV, Plenge RM, Bauer JW et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550–555.

    CAS  PubMed  Google Scholar 

  88. Kozyrev SV, Lewen S, Reddy PM, Pons-Estel B, Witte T, Junker P et al. Structural insertion/deletion variation in IRF5 is associated with a risk haplotype and defines the precise IRF5 isoforms expressed in systemic lupus erythematosus. Arthritis Rheum 2007; 56: 1234–1241.

    CAS  PubMed  Google Scholar 

  89. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS et al. Genetic analysis of genome-wide variation in human gene expression. Nature 2004; 430: 743–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT . Mapping determinants of human gene expression by regional and genome-wide association. Nature 2005; 437: 1365–1369.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LR, Baechler EC et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci USA 2007; 104: 6758–6763.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. The International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    PubMed Central  Google Scholar 

  93. Conne B, Stutz A, Vassalli JD . The 3' untranslated region of messenger RNA: A molecular. Nat Med 2000; 6: 637–641.

    CAS  PubMed  Google Scholar 

  94. Edmonds M . A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol 2002; 71: 285–389.

    CAS  PubMed  Google Scholar 

  95. Mendez R, Richter JD . Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2001; 2: 521–529.

    CAS  PubMed  Google Scholar 

  96. Cunninghame Graham DS, Manku H, Wagner S, Reid J, Timms K, Gutin A et al. Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. Hum Mol Genet 2007; 16: 579–591.

    CAS  PubMed  Google Scholar 

  97. Levi BZ, Hashmueli S, Gleit-Kielmanowicz M, Azriel A, Meraro D . ICSBP/IRF-8 transactivation: a tale of protein–protein interaction. J Interferon Cytokine Res 2002; 22: 153–160.

    CAS  PubMed  Google Scholar 

  98. Pascual V, Farkas L, Banchereau J . Systemic lupus erythematosus: all roads lead to type I interferons. Curr Opin Immunol 2006; 18: 676–682.

    CAS  PubMed  Google Scholar 

  99. Banchereau J, Pascual V . Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 2006; 25: 383–392.

    CAS  PubMed  Google Scholar 

  100. Graham RR, Ortmann WA, Langefeld CD, Jawaheer D, Selby SA, Rodine PR et al. Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am J Hum Genet 2002; 71: 543–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shin HD, Sung YK, Choi CB, Lee SO, Lee HW, Bae SC . Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population. Arthritis Res Ther 2007; 9: R32.

    PubMed  PubMed Central  Google Scholar 

  102. Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L et al. A human genome diversity cell line panel. Science 2002; 296: 261–262.

    CAS  PubMed  Google Scholar 

  103. Fanzo JC, Yang W, Jang SY, Gupta S, Chen Q, Siddiq A et al. Loss of IRF-4-binding protein leads to the spontaneous development of systemic autoimmunity. J Clin Invest 2006; 116: 703–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Akahoshi M, Nakashima H, Shirakawa T . Roles of genetic variations in signalling/immunoregulatory molecules in susceptibility to systemic lupus erythematosus. Semin Immunol 2006; 18: 224–229.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to Dr Robert R Graham (Harvard University, Massachusetts Institute of Technology) and Dr Timothy W Behrens (Genentech Inc.) for collaboration, supervision and inspiration. We also thank Dr Emily C Baechler-Gillespie (University of Minnesota), Aya Kawasaki and Koki Hikami (University of Tsukuba) for collaboration and helpful comments.

This work was supported by Grant-in-Aid for Scientific Research on Priority Areas ‘Applied Genomics’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Grants from the Ministry of Health, Labour and Welfare of Japan, Japan Society for the Promotion of Science (JSPS), Takeda Science Foundation, and Japan Rheumatism Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Tsuchiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyogoku, C., Tsuchiya, N. A compass that points to lupus: genetic studies on type I interferon pathway. Genes Immun 8, 445–455 (2007). https://doi.org/10.1038/sj.gene.6364409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364409

Keywords

This article is cited by

Search

Quick links