Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

IRF-3-dependent and augmented target genes during viral infection

Abstract

Activation of the transcription factor interferon regulatory factor-3 (IRF-3) is an essential event in the innate immune response to viral infection. To understand the contribution of IRF-3 to host defense, we used a systems biology approach to analyze global gene expression dependent on IRF-3. Comparison of expression profiles in cells from IRF-3 knockout animals or wild-type siblings following viral infection revealed three sets of induced genes, those that are strictly dependent on IRF-3, augmented with IRF-3, or not responsive to IRF-3. Products of identified IRF-3 target genes are involved in innate or acquired immunity, or in the regulation of cell cycle, apoptosis and proliferation. These results reveal the global effects of one transcription factor in the immune response and provide information to evaluate the integrated response to viral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Honda K, Taniguchi T . IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev 2006; 6: 644–658.

    CAS  Google Scholar 

  2. Kawai T, Akira S . Innate immune recognition of viral infection. Nat Immunol 2006; 7: 131–137.

    Article  CAS  Google Scholar 

  3. Hiscott J . Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 2007; 282: 15325–15329.

    Article  CAS  Google Scholar 

  4. Weaver BK, Kumar KP, Reich NC . Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol Cell Biol 1998; 18: 1359–1368.

    Article  CAS  Google Scholar 

  5. Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T . Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J 1998; 17: 1087–1095.

    Article  CAS  Google Scholar 

  6. Wathelet MG, Lin CH, Parekh BS, Ronco LV, Howley PM, Maniatis T . Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell 1998; 1: 507–518.

    Article  CAS  Google Scholar 

  7. Sato M, Tanaka N, Hata N, Oda E, Taniguchi T . Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene. FEBS Lett 1998; 425: 112–116.

    Article  CAS  Google Scholar 

  8. Lin R, Heylbroeck C, Pitha PM, Hiscott J . Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 1998; 18: 2986–2996.

    Article  CAS  Google Scholar 

  9. Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 2000; 13: 539–548.

    Article  CAS  Google Scholar 

  10. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434: 772–777.

    Article  CAS  Google Scholar 

  11. Honda K, Takaoka A, Taniguchi T . Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 2006; 25: 349–360.

    Article  CAS  Google Scholar 

  12. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4: 491–496.

    Article  CAS  Google Scholar 

  13. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J . Triggering the interferon antiviral response through an IKK-related pathway. Science 2003; 300: 1148–1151.

    Article  CAS  Google Scholar 

  14. Kumar KP, McBride KM, Weaver BK, Dingwall C, Reich NC . Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1. Mol Cell Biol 2000; 20: 4159–4168.

    Article  CAS  Google Scholar 

  15. Daly C, Reich NC . Double-stranded RNA activates novel factors that bind to the interferon-stimulated response element. Mol Cell Biol 1993; 13: 3756–3764.

    Article  CAS  Google Scholar 

  16. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD . How cells respond to interferons? Annu Rev Biochem 1998; 67: 227–264.

    Article  CAS  Google Scholar 

  17. Levy DE, Darnell Jr JE . Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3: 651–662.

    Article  CAS  Google Scholar 

  18. Sen GC . Viruses and interferons. Annu Rev Microbiol 2001; 55: 255–281.

    Article  CAS  Google Scholar 

  19. Stetson DB, Medzhitov R . Type I interferons in host defense. Immunity 2006; 25: 373–381.

    Article  CAS  Google Scholar 

  20. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D . Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 2000; 103: 667–678.

    Article  CAS  Google Scholar 

  21. Grandvaux N, Servant MJ, tenOever B, Sen GC, Balachandran S, Barber GN et al. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 2002; 76: 5532–5539.

    Article  CAS  Google Scholar 

  22. Elco CP, Guenther JM, Williams BR, Sen GC . Analysis of genes induced by Sendai virus infection of mutant cell lines reveals essential roles of interferon regulatory factor 3, NF-kappaB, and interferon but not toll-like receptor 3. J Virol 2005; 79: 3920–3929.

    Article  CAS  Google Scholar 

  23. Daly C, Reich NC . Characterization of specific DNA-binding factors activated by double-stranded RNA as positive regulators of interferon alpha/beta-stimulated genes. J Biol Chem 1995; 270: 23739–23746.

    Article  CAS  Google Scholar 

  24. Terenzi F, deVeer MJ, Ying H, Restifo NP, Williams BR, Silverman RH . The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors. Nucleic Acids Res 1999; 27: 4369–4375.

    Article  CAS  Google Scholar 

  25. Marie I, Durbin JE, Levy DE . Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 1998; 17: 6660–6669.

    Article  CAS  Google Scholar 

  26. Moser B, Wolf M, Walz A, Loetscher P . Chemokines: multiple levels of leukocyte migration control. Trends Immunol 2004; 25: 75–84.

    Article  CAS  Google Scholar 

  27. Arenzana-Seisdedos F, Virelizier JL, Rousset D, Clark-Lewis I, Loetscher P, Moser B et al. HIV blocked by chemokine antagonist. Nature 1996; 383: 400.

    Article  CAS  Google Scholar 

  28. Starling GC, Whitney GS, Siadak AW, Llewellyn MB, Bowen MA, Farr AG et al. Characterization of mouse CD6 with novel monoclonal antibodies, which enhance the allogeneic mixed leukocyte reaction. Eur J Immunol 1996; 26: 738–746.

    Article  CAS  Google Scholar 

  29. Chien YH, Jores R, Crowley MP . Recognition by gamma/delta T cells. Annu Rev Immunol 1996; 14: 511–532.

    Article  CAS  Google Scholar 

  30. Kambayashi T, Kraft-Leavy JR, Dauner JG, Sullivan BA, Laur O, Jensen PE . The nonclassical MHC class I molecule Qa-1 forms unstable peptide complexes. J Immunol 2004; 172: 1661–1669.

    Article  CAS  Google Scholar 

  31. Wang X, Johansen LM, Tae HJ, Taparowsky EJ . IFP 35 forms complexes with B-ATF, a member of the AP1 family of transcription factors. Biochem Biophys Res Commun 1996; 229: 316–322.

    Article  CAS  Google Scholar 

  32. Weichenhan D, Kunze B, Zacker S, Traut W, Winking H . Structure and expression of the murine Sp100 nuclear dot gene. Genomics 1997; 43: 298–306.

    Article  CAS  Google Scholar 

  33. Espert L, Degols G, Lin YL, Vincent T, Benkirane M, Mechti N . Interferon-induced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1. J Gen Virol 2005; 86 (Part 8): 2221–2229.

    Article  CAS  Google Scholar 

  34. Terenzi F, Pal S, Sen GC . Induction and mode of action of the viral stress-inducible murine proteins, P56 and P54. Virology 2005; 340: 116–124.

    Article  CAS  Google Scholar 

  35. Chin KC, Cresswell P . Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc Natl Acad Sci USA 2001; 98: 15125–15130.

    Article  CAS  Google Scholar 

  36. MacMicking JD, Taylor GA, McKinney JD . Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 2003; 302: 654–659.

    Article  CAS  Google Scholar 

  37. Zhu H, Cong JP, Shenk T . Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: induction of interferon-responsive RNAs. Proc Natl Acad Sci USA 1997; 94: 13985–13990.

    Article  CAS  Google Scholar 

  38. Spengler D, Villalba M, Hoffmann A, Pantaloni C, Houssami S, Bockaert J et al. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J 1997; 16: 2814–2825.

    Article  CAS  Google Scholar 

  39. Unoki M, Nakamura Y . EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene 2003; 22: 2172–2185.

    Article  CAS  Google Scholar 

  40. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415: 92–96.

    Article  CAS  Google Scholar 

  41. Trubia M, Sessa L, Taramelli R . Mammalian Rh/T2/S-glycoprotein ribonuclease family genes: cloning of a human member located in a region of chromosome 6 (6q27) frequently deleted in human malignancies. Genomics 1997; 42: 342–344.

    Article  CAS  Google Scholar 

  42. Shiloh Y . ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003; 3: 155–168.

    Article  CAS  Google Scholar 

  43. Monaco JJ, Nandi D . The genetics of proteasomes and antigen processing. Annu Rev Genet 1995; 29: 729–754.

    Article  CAS  Google Scholar 

  44. Genin P, Algarte M, Roof P, Lin R, Hiscott J . Regulation of RANTES chemokine gene expression requires cooperativity between NF-kappa B and IFN-regulatory factor transcription factors. J Immunol 2000; 164: 5352–5361.

    Article  CAS  Google Scholar 

  45. Bluyssen HA, Vlietstra RJ, Faber PW, Smit EM, Hagemeijer A, Trapman J . Structure, chromosome localization, and regulation of expression of the interferon-regulated mouse Ifi54/Ifi56 gene family. Genomics 1994; 24: 137–148.

    Article  CAS  Google Scholar 

  46. Honda K, Yanai H, Takaoka A, Taniguchi T . Regulation of the type I IFN induction: a current view. Int Immunol 2005; 17: 1367–1378.

    Article  CAS  Google Scholar 

  47. Lee AH, Hong JH, Seo YS . Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors. Biochem J 2000; 350 (Part 1): 131–138.

    Article  CAS  Google Scholar 

  48. Weaver BK, Ando O, Kumar KP, Reich NC . Apoptosis is promoted by the dsRNA-activated factor (DRAF1) during viral infection independent of the action of interferon or p53. FASEB J 2001; 15: 501–515.

    Article  CAS  Google Scholar 

  49. Taniguchi T, Takaoka A . The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 2002; 14: 111–116.

    Article  CAS  Google Scholar 

  50. Lomvardas S, Thanos D . Modifying gene expression programs by altering core promoter chromatin architecture. Cell 2002; 110: 261–271.

    Article  CAS  Google Scholar 

  51. Maniatis T, Falvo JV, Kim TH, Kim TK, Lin CH, Parekh BS et al. Structure and function of the interferon-beta enhanceosome. Cold Spring Harb Symp Quant Biol 1998; 63: 609–620.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the members of the laboratory for support and discussions. We gratefully acknowledge Dr Tadasugu Taniguchi (University of Tokyo) for providing us with cells from WT and IRF-3 KO animals. We also thank John Schwedes at the Affymetrix core facility for his role in processing and analyzing the microarrays, and Michelle Massoth for help with Genesifter Software (www.genesifter.net). We are grateful to Dr Herb Lewis and Robert Andersen for writing a Visual Basic code used for secondary comparisons. Human IFN-αA was a kind gift of Hoffman-LaRoche, NJ, USA). These studies were supported by grants from NIH (R21AI067885 and PO1AI0555621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N C Reich.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, J., VanScoy, S., Cheng, TF. et al. IRF-3-dependent and augmented target genes during viral infection. Genes Immun 9, 168–175 (2008). https://doi.org/10.1038/sj.gene.6364449

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364449

Keywords

This article is cited by

Search

Quick links