Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells

Abstract

To provide a means for comparing strategies for cytokine gene therapy against intracranial (i.c.) tumors, we generated rat gliosarcoma 9L cells transfected with interleukin-4 (9L-IL4), interleukin-12 (9L-IL12), granulocyte–macrophage colony-stimulating factor (9L-GMCSF) or interferon-α (9L-IFNα). To simulate direct and highly efficient cytokine gene delivery, cytokine transfected 9L tumors were implanted i.c. into syngeneic rats. i.c. injection led to tumor-outgrowth in the brain and killed most animals, whereas these cell lines were rejected following intradermal (i.d.) injection. Cytokine-expressing i.c. 9L tumors, however, had a greater degree of infiltration by immune cells compared with control, mock-transfected 9L-neo, but to a lesser degree than i.d. cytokine-expressing tumors. Tumor angiogenesis was suppressed in cytokine-transfected tumors. In a prophylaxis model, i.d. vaccination with 9L-IL4 resulted in long-term survival of 90% of rats challenged i.c. with parental 9L; whereas 40% of 9L-GM-CSF, 40% of 9L-IFNα and 0% of 9L-IL12-immunized rats were protected. In a therapy model (day 3 i.c. 9L tumors), only i.d. immunization with 9L-IL4 had long-term therapeutic benefits as 43% of rats survived >100 days. These data indicate that peripheral immunization with 9L-IL4 had the most potent therapeutic benefit among various cytokines and approaches tested against established, i.c. 9L tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gilbert MR, Lunsford LD, Kondziolka L . A phase II trial of continuous infusion chemotherapy, external beam radiotherapy and local boost radiotherapy Proc Am Soc Clin Oncol 1993 12: 76 (Abstr.)

    Google Scholar 

  2. Larson DA et al. Gamma knife for glioma: selection factors and survival Int J Radiat Oncol Biol Phys 1996 36: 1045–1053

    Article  CAS  PubMed  Google Scholar 

  3. Grabb PA et al. Stereotactic radiosurgery for glial neoplasms of childhood Neurosurg 1996 38: 696–701

    Article  CAS  Google Scholar 

  4. Palma L, Di Lorenzo N, Guidetti B . Lymphocytic infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 operated cases J Neurosurg 1978 49: 854–861

    Article  CAS  PubMed  Google Scholar 

  5. Brooks WH, Markesbery WR, Gupta GD, Roszman TL . Relationship of lymphocyte invasion and survival of brain tumor patients Ann Neurol 1978 4: 219–224

    Article  CAS  PubMed  Google Scholar 

  6. Okada H et al. Effective cytokine gene therapy against an intracranial glioma using a retrovirally transduced IL-4 plus HSV-TK tumor vaccine Gene Therapy 1999 6: 219–226

    Article  CAS  PubMed  Google Scholar 

  7. Okada H et al. Bone marrow derived dendritic cells pulsed with a tumor specific peptide elicit effective anti-tumor immunity against intracranial neoplasms Int J Cancer 1998 78: 196–201

    Article  CAS  PubMed  Google Scholar 

  8. Sampson JH et al. Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the ‘immunologically privileged’ central nervous system Proc Natl Acad Sci USA 1996 93: 10399–10404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wakimoto H et al. Intensified antitumor immunity by a cancer vaccine that produces granulocyte–macrophage colony-stimulating factor plus interleukin 4 Cancer Res 1996 56: 1828–1833

    CAS  PubMed  Google Scholar 

  10. Mule JJ et al. Transforming growth factor-beta inhibits the in vitro generation of lymphokine-activated killer cells and cytotoxic T cells Cancer Immunol Immunother 1988 26: 95–100

    CAS  PubMed  Google Scholar 

  11. Kuppner MC et al. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2 J Neurosurg 1989 71: 211–217

    Article  CAS  PubMed  Google Scholar 

  12. Saas P et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest 1997 99: 1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zou JP et al. Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers J Immunol 1999 162: 4882–4892

    CAS  PubMed  Google Scholar 

  14. Jacobs SK, Wilson DJ, Kornblith PL, Grimm EA . Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial Cancer Res 1986 46: 2101–2104

    CAS  PubMed  Google Scholar 

  15. Barba D et al. Intratumoral LAK cell and interleukin-2 therapy of human gliomas J Neurosurg 1989 70: 175–182

    Article  CAS  PubMed  Google Scholar 

  16. Bigner DD, Pitts OM, Wikstrand CJ . Induction of lethal experimental allergic encephalomyelitis in non-human primates and guinea pigs with human glioblastoma multiforme tissue J Neurosurg 1981 55: 32–42

    Article  CAS  PubMed  Google Scholar 

  17. Mahaley MS Jr et al. Immunobiology of primary intracranial tumors. Part 7: active immunization of patients with anaplastic human glioma cells: a pilot study J Neurosurg 1983 59: 201–207

    Article  PubMed  Google Scholar 

  18. Mahaley MS Jr et al. Immunobiology of primary intracranial tumors. Part 1: studies of the cellular and humoral general immune competence of brain-tumor patients J Neurosurg 1977 46: 467–476

    Article  PubMed  Google Scholar 

  19. Siesjo P, Visse E, Sjogren HO . Cure of established, intracerebral rat gliomas induced by therapeutic immunizations with tumor cells and purified APC or adjuvant IFN-gamma treatment J Immunother 1996 19: 334–345

    Article  CAS  Google Scholar 

  20. Ashley DM et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors J Exp Med 1997 186: 1177–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liau LM et al. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens J Neurosurg 1999 90: 1115–1124

    Article  CAS  PubMed  Google Scholar 

  22. Okada H et al. Characterization and transduction of a retroviral vector encoding human interleukin-4 and the herpes simplex-thymidine kinase for glioma tumor vaccine therapy Cancer Gene Ther 2000 7: 486–494

    Article  CAS  PubMed  Google Scholar 

  23. Benedetti S et al. Eradication of rat malignant gliomas by retroviral-mediated, in vivo delivery of the interleukin 4 gene Cancer Res 1999 59: 645–652

    CAS  PubMed  Google Scholar 

  24. Benedetti S et al. Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene Hum Gene Ther 1997 8: 1345–1353

    Article  CAS  PubMed  Google Scholar 

  25. Andreansky S et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins Gene Therapy 1998 5: 121–130

    Article  CAS  PubMed  Google Scholar 

  26. Benedetti S et al. Gene therapy of experimental brain tumors using neural progenitor cells Nature Med 2000 6: 447–450

    Article  CAS  PubMed  Google Scholar 

  27. Golumbek PT et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4 Science 1991 254: 713–716

    Article  CAS  PubMed  Google Scholar 

  28. Pericle F et al. An efficient Th2-type memory follows CD8+ lymphocyte-driven and eosinophil-mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4 J Immunol 1994 153: 5659–5673

    CAS  PubMed  Google Scholar 

  29. Blankenstein T, Li WQ, Muller W, Diamantstein T . Retroviral interleukin 4 gene transfer into an interleukin 4-dependent cell line results in autocrine growth but not in tumorigenicity Eur J Immunol 1990 20: 935–938

    Article  CAS  PubMed  Google Scholar 

  30. Tahara H et al. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector J Immunol 1995 154: 6466–6474

    CAS  PubMed  Google Scholar 

  31. Tahara H et al. IL-12 gene therapy using direct injection of tumors with genetically engineered autologous fibroblasts Hum Gene Ther 1995 6: 1607–1624

    Article  CAS  PubMed  Google Scholar 

  32. Zitvogel L et al. Cancer immunotherapy of established tumors with IL-12. Effective delivery by genetically engineered fibroblasts J Immunol 1995 155: 1393–1403

    CAS  PubMed  Google Scholar 

  33. Zitvogel L et al. Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors Eur J Immunol 1996 26: 1335–1341

    Article  CAS  PubMed  Google Scholar 

  34. Santodonato L et al. Cure of mice with established metastatic friend leukemia cell tumors by a combined therapy with tumor cells expressing both interferon-alpha 1 and herpes simplex thymidine kinase followed by ganciclovir Hum Gene Ther 1996 7: 1–10

    Article  CAS  PubMed  Google Scholar 

  35. Tuting T et al. Interferon-alpha gene therapy for cancer: retroviral transduction of fibroblasts and particle-mediated transfection of tumor cells are both effective strategies for gene delivery in murine tumor models Gene Therapy 1997 4: 1053–1060

    Article  CAS  PubMed  Google Scholar 

  36. Coleman M et al. Nonviral interferon alpha gene therapy inhibits growth of established tumors by eliciting a systemic immune response Hum Gene Ther 1998 9: 2223–2230

    Article  CAS  PubMed  Google Scholar 

  37. Jean WC et al. Interleukin-12-based immunotherapy against rat 9L glioma Neurosurg 1998 42: 850–856

    Article  CAS  Google Scholar 

  38. Chen-Woan M et al. In vitro characterization of rat bone marrow-derived dendritic cells and their precursors J Leukocyte Biol 1996 59: 196–207

    Article  CAS  PubMed  Google Scholar 

  39. Talmor M et al. Generation or large numbers of immature and mature dendritic cells from rat bone marrow cultures Eur J Immunol 1998 28: 811–817

    Article  CAS  PubMed  Google Scholar 

  40. Fakhrai H et al. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy Proc Natl Acad Sci USA 1996 93: 2909–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Okada H et al. Gene therapy of malignant gliomas: a phase I study of IL4HSV-TK genemodified autologous tumor to elicit an immune response (clinical protocol) Hum Gene Ther 2000 11: 637–653

    Article  CAS  PubMed  Google Scholar 

  42. Sampson JH et al. Characterization of a spontaneous murine astrocytoma and abrogation of its tumorigenicity by cytokine secretion Neurosurg 1997 41: 1365–1372

    Article  CAS  Google Scholar 

  43. Tjuvajev J et al. RG-2 glioma growth attenuation and severe brain edema caused by local production of interleukin-2 and interferon-gamma Cancer Res 1995 55: 1902–1910

    CAS  PubMed  Google Scholar 

  44. Dewey RA et al. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials Nature Med 1999 5: 1256–1263

    Article  CAS  PubMed  Google Scholar 

  45. Giezeman-Smits KM et al. Cytokine gene therapy of gliomas: induction of reactive CD4+ T cells by interleukin-4 transfected 9L gliosarcoma is essential for protective immunity Cancer Res 2000 60: 2449–2457

    CAS  PubMed  Google Scholar 

  46. Saleh M et al. Effect of in situ retroviral interleukin-4 transfer on established intracranial tumors J Natl Cancer Inst 1999 91: 438–445

    Article  CAS  PubMed  Google Scholar 

  47. Saleh M, Davis ID, Wilks AF . The paracrine role of tumour-derived mIL-4 on tumour-associated endothelium Int J Cancer 1997 72: 664–672

    Article  CAS  PubMed  Google Scholar 

  48. Angiolillo AL, Sgadari C, Tosato G . A role for the interferon-inducible protein 10 in inhibition of angiogenesis by interleukin-12 Ann NY Acad Sci 1996 795: 158–167

    Article  CAS  PubMed  Google Scholar 

  49. Joseph IB, Isaacs JT . Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents J Natl Cancer Inst 1998 90: 1648–1653

    Article  CAS  PubMed  Google Scholar 

  50. Dimeco F et al. Paracrine delivery of IL-12 against intracranial 9L gliosarcoma in rats J Neurosurg 2000 92: 419–427

    Article  CAS  PubMed  Google Scholar 

  51. Wallenfriedman MA et al. Effects of continuous localized infusion of granulocyte–macrophage colony-stimulating factor and inoculations of irradiated glioma cells on tumor regression J Neurosurg 1999 90: 1064–1071

    Article  CAS  PubMed  Google Scholar 

  52. Tseng SH, Hsieh CL, Lin SM, Hwang LH . Regression of orthotopic brain tumors by cytokine-assisted tumor vaccines primed in the brain Cancer Gene Ther 1999 6: 302–312

    Article  CAS  PubMed  Google Scholar 

  53. Tseng SH, Hwang LH, Lin SM . Induction of antitumor immunity by intracerebrally implanted rat C6 glioma cells genetically engineered to secrete cytokines J Immunother 1997 20: 334–342

    Article  CAS  PubMed  Google Scholar 

  54. Chomarat P, Rybak ME, Banchereau J . Interleukin-4. In: Thomson A (ed.) The Cytokine Handbook Academic Press: London 1998 pp . 133–174

    Google Scholar 

  55. Schüler T et al. TH1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in IL-4-deficient mice J Exp Med 1999 189: 803–810

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lingnau K et al. IL-4 in combination with TGF-beta favors an alternative pathway of Th1 development independent of IL-12 J Immunol 1998 161: 4709–4718

    CAS  PubMed  Google Scholar 

  57. Nishihori H et al. Participation of endogenously produced interferon gamma in interleukin 4-mediated tumor rejection Hum Gene Ther 2000 11: 659–668

    Article  CAS  PubMed  Google Scholar 

  58. Danos O, Mulligan RC . Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges Proc Natl Acad Sci USA 1988 85: 6460–6464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection Proc Natl Acad Sci USA 1993 90: 8392–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants CA68550, CA68067, and NS01810, a grant from the Copeland Fund of The Pittsburgh Foundation, and a grant from the CMRF of the University of Pittsburgh. The authors would like to express their appreciation to Drs Hideaki Tahara, Kazumasa Hiroishi and Tadamichi Suzuki who provided the DFG-retroviral vectors used in this study.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, H., Villa, L., Attanucci, J. et al. Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Ther 8, 1157–1166 (2001). https://doi.org/10.1038/sj.gt.3301496

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301496

Keywords

This article is cited by

Search

Quick links