Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Satellite – Non-Embryonic Stem Cells

Plasticity of marrow-derived stem cells

Abstract

Many exciting discoveries reported over the past 3 years have caused us to expand the paradigm for understanding somatic stem cell plasticity. Within adult organs, there are not only specific stem cells that are capable of producing functional cells of one organ system, but also cells with the flexibility to differentiate into multiple other cell types. In the bone marrow, for example, in addition to hematopoietic stem cells and supportive stromal cells, there are cells with the potential to differentiate into mature cells of the heart, liver, kidney, lungs, GI tract, skin, bone, muscle, cartilage, fat, endothelium and brain. A subpopulation of cells in the brain can differentiate into all of the major cell types in the brain and also into hematopoietic and skeletal muscle cells. In this brief overview, several of these recent findings are summarized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krause DS et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells Blood 1994 84: 691–701

    CAS  PubMed  Google Scholar 

  2. Wolf N, Kone A, Priestley G, Bartelmez S . In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection Exp Hematol 1993 21: 614–619

    CAS  PubMed  Google Scholar 

  3. Goodell MA et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo J Exp Med 1996 183: 1797–1806

    Article  CAS  Google Scholar 

  4. Fleming WH et al. Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells J Cell Biol 1993 122: 897–902

    Article  CAS  Google Scholar 

  5. Pereira R et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice Proc Natl Acad Sci USA 1995 92: 4857–4861

    Article  CAS  Google Scholar 

  6. Prockop D . Marrow stromal cells as stem cells for nonhematopoietic tissues Science 1997 276: 71–74

    Article  CAS  Google Scholar 

  7. Pereira RF et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta Proc Natl Acad Sci USA 1998 95: 1142–1147

    Article  CAS  Google Scholar 

  8. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells Science 1999 284: 143–147

    Article  CAS  Google Scholar 

  9. Friedenstein AJ, Chailakhjan RK, Lalykina KS . The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells Cell Tissue Kinet 1970 3: 393–403

    CAS  PubMed  Google Scholar 

  10. Horwitz EM et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta Nat Med 1999 5: 309–313

    Article  CAS  Google Scholar 

  11. Reyes M et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells Blood 2001 98: 2615–2625

    Article  CAS  Google Scholar 

  12. Ferrari G et al. Muscle regeneration by bone marrow-derived myogenic progenitors Science 1998 279: 1528–1530

    Article  CAS  Google Scholar 

  13. Gussoni E et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation Nature 1999 401: 390–394

    CAS  PubMed  Google Scholar 

  14. Kocher AA et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function Nat Med 2001 7: 430–436

    Article  CAS  Google Scholar 

  15. Orlic D et al. Bone marrow cells regenerate infarcted myocardium Nature 2001 410: 701–705

    Article  CAS  Google Scholar 

  16. Orlic D et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival Proc Natl Acad Sci USA 2001 98: 10344–10349

    Article  CAS  Google Scholar 

  17. Eglitis MA, Mezey E . Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice Proc Natl Acad Sci USA 1997 94: 4080–4085

    Article  CAS  Google Scholar 

  18. Brazelton TR, Rossi FM, Keshet GI, Blau HM . From marrow to brain: expression of neuronal phenotypes in adult mice Science 2000 290: 1775–1779

    Article  CAS  Google Scholar 

  19. Mezey E et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow Science 2000 290: 1779–1782

    Article  CAS  Google Scholar 

  20. Sanchez-Ramos J et al. Adult bone marrow stromal cells differentiate into neural cells in vitro Exp Neurol 2000 164: 247–256

    Article  CAS  Google Scholar 

  21. Woodbury D, Schwarz EJ, Prockop DJ, Black IB . Adult rat and human bone marrow stromal cells differentiate into neurons J Neurosci Res 2000 61: 364–370

    Article  CAS  Google Scholar 

  22. Petersen BE et al. Bone marrow as a potential source of hepatic oval cells Science 1999 284: 1168–1170

    Article  CAS  Google Scholar 

  23. Theise ND et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation Hepatology 2000 31: 235–240

    Article  CAS  Google Scholar 

  24. Theise ND et al. Liver from bone marrow in humans Hepatology 2000 32: 11–16

    Article  CAS  Google Scholar 

  25. Lagasse E et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo Nat Med 2000 6: 1229–1234

    Article  CAS  Google Scholar 

  26. Poulsom R et al. Bone marrow contributes to renal parenchymal turnover and regeneration J Pathol 2001 195: 229–235

    Article  CAS  Google Scholar 

  27. Imasawa T et al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells J Am Soc Nephrol 2001 12: 1401–1409

    CAS  PubMed  Google Scholar 

  28. Krause DS et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell Cell 2001 105: 369–377

    Article  CAS  Google Scholar 

  29. Alison MR et al. Hepatocytes from non-hepatic adult stem cells Nature 2000 406: 257

    Article  CAS  Google Scholar 

  30. Jackson KA et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells J Clin Invest 2001 107: 1395–1402

    Article  CAS  Google Scholar 

  31. Bjornson CR et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo Science 1999 283: 534–537

    Article  CAS  Google Scholar 

  32. Rietze RL et al. Purification of a pluripotent neural stem cell from the adult mouse brain Nature 2001 412: 736–739

    Article  CAS  Google Scholar 

  33. Zuk PA et al. Multilineage cells from human adipose tissue: implications for cell- based therapies Tissue Eng 2001 7: 211–228

    Article  CAS  Google Scholar 

  34. Toma JG et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin Nat Cell Biol 2001 3: 778–784

    Article  CAS  Google Scholar 

  35. Wilmut I et al. Viable offspring derived from fetal and adult mammalian cells Nature 1997 385: 810–813

    Article  CAS  Google Scholar 

  36. Cibelli JB et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts Science 1998 280: 1256–1258

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, D. Plasticity of marrow-derived stem cells. Gene Ther 9, 754–758 (2002). https://doi.org/10.1038/sj.gt.3301760

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301760

Keywords

This article is cited by

Search

Quick links