Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Light-activated gene transduction of recombinant adeno-associated virus in human mesenchymal stem cells

Abstract

Deficiencies in skeletal tissue repair and regeneration lead to conditions like osteoarthritis, osteoporosis and degenerative disc disease. While no cure for these conditions is available, the use of human bone marrow derived-mesenchymal stem cells (HuMSCs) has been shown to have potential for cell-based therapy. Furthermore, recombinant adeno-associated viruses (rAAV) could be used together with HuMSCs for in vivo or ex vivo gene therapy. Unfortunately, the poor transduction efficiency of these cells remains a significant obstacle. Here, we describe the properties of ultraviolet (UV) light-activated gene transduction (LAGT) with rAAV in HuMSCs, an advance toward overcoming this limitation. Using direct fluorescent image analysis and real-time quantitative PCR to evaluate enhanced green fluorescent protein (eGFP) gene expression, we found that the optimal effects of LAGT with limited cytotoxicity occurred at a UV dose of 200 J/m2. Furthermore, this UV irradiation had no effect on either the chondrogenic or osteogenic potential of HuMSCs. Significant effects of LAGT in HuMSCs could be detected as early as 12 h after exposure and persisted over 21 days, in a time and energy-dependent manner. This LAGT effect was maintained for more than 8 h after irradiation and required only a 10-min exposure to rAAV after UV irradiation. Finally, we show that the production of secreted TGFβ1 protein from rAAV-TGFβ1-IRES-eGFP infected to HuMSCs is highly inducible by UV irradiation. These results demonstrate that LAGT combined with rAAV is a promising procedure to facilitate gene induction in HuMSCs for human gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Prockop DJ . Stem cell research has only just begun. Science 2001; 293: 211–212.

    Article  CAS  PubMed  Google Scholar 

  2. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    Article  CAS  PubMed  Google Scholar 

  3. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  4. Makino S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103: 697–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liechty KW et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282–1286.

    Article  CAS  PubMed  Google Scholar 

  6. Kopen GC, Prockop DJ, Phinney DG . Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999; 96: 10711–10716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pereira RF et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 1995; 92: 4857–4861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang Y et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    Article  CAS  PubMed  Google Scholar 

  9. Reyes M et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001; 98: 2615–2625.

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz RE et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002; 109: 1291–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horwitz EM et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99: 8932–8937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horwitz EM et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309–313.

    Article  CAS  PubMed  Google Scholar 

  13. Strauer BE et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106: 1913–1918.

    Article  PubMed  Google Scholar 

  14. Koc ON et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000; 18: 307–316.

    Article  CAS  PubMed  Google Scholar 

  15. Caplan AI . Mesenchymal stem cells and gene therapy. Clin Orthop 2000; 379S: S67–S70.

    Article  Google Scholar 

  16. Caplan AI, Mosca JD . Orthopaedic gene therapy. Stem cells for gene delivery. Clin Orthop 2000; 379S: S98–S100.

    Article  Google Scholar 

  17. O'Brien K, Muskiewicz K, Gussoni E . Recent advances in and therapeutic potential of muscle-derived stem cells. J Cell Biochem Suppl 2002; 38: 80–87.

    Article  PubMed  Google Scholar 

  18. Colter DC, Class R, DiGirolamo CM, Prockop DJ . Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 2000; 97: 3213–3218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones EA et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 2002; 46: 3349–3360.

    Article  PubMed  Google Scholar 

  20. Lieberman JR et al. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res 1998; 16: 330–339.

    Article  CAS  PubMed  Google Scholar 

  21. Lieberman JR et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999; 81-A: 905–917.

    Article  Google Scholar 

  22. Cheng SL et al. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. Calcif Tissue Int 2001; 68: 87–94.

    Article  CAS  PubMed  Google Scholar 

  23. Olmsted-Davis EA et al. Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Hum Gene Ther 2002; 13: 1337–1347.

    Article  CAS  PubMed  Google Scholar 

  24. Gysin R et al. Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats. Gene Therapy 2002; 9: 991–999.

    Article  CAS  PubMed  Google Scholar 

  25. Schwarz EM . The adeno-associated virus vector for orthopaedic gene therapy. Clin Orthop 2000; 379S: S31–S39.

    Article  Google Scholar 

  26. Goater J et al. Empirical advantages of adeno associated viral vectors in vivo gene therapy for arthritis. J Rheumatol 2000; 27: 983–989.

    CAS  PubMed  Google Scholar 

  27. Zhou SZ et al. Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood. J Exp Med 1994; 179: 1867–1875.

    Article  CAS  PubMed  Google Scholar 

  28. Nathwani AC et al. Efficient gene transfer into human cord blood CD34+ cells and the CD34+CD38- subset using highly purified recombinant adeno-associated viral vector preparations that are free of helper virus and wild-type AAV. Gene Therapy 2000; 7: 183–195.

    Article  CAS  PubMed  Google Scholar 

  29. Wu P, Ye Y, Svendsen CN . Transduction of human neural progenitor cells using recombinant adeno-associated viral vectors. Gene Therapy 2002; 9: 245–255.

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi N et al. Gene marking in adeno-associated virus vector infected periosteum derived cells for cartilage repair. J Rheumatol 2002; 29: 2176–2180.

    CAS  PubMed  Google Scholar 

  31. Alexander IE, Russell DW, Miller AD . DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J Virol 1994; 68: 8282–8287.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Russell DW, Alexander IE, Miller AD . DNA synthesis and topoisomerase inhibitors increase transduction by adeno-associated virus vectors. Proc Natl Acad Sci USA 1995; 92: 5719–5723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fisher KJ et al. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrari FK, Samulski T, Shenk T, Samulski RJ . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70: 3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Koeberl DD et al. Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA 1997; 94: 1426–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ulrich-Vinther M et al. Light-activated gene transduction enhances adeno-associated virus vector-mediated gene expression in human articular chondrocytes. Arthritis Rheum 2002; 46: 2095–2104.

    Article  CAS  PubMed  Google Scholar 

  37. Seisenberger G et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001; 294: 1929–1932.

    Article  CAS  PubMed  Google Scholar 

  38. Bianco P, Robey PG . Marrow stromal stem cells. J Clin Invest 2000; 105: 1663–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ballas CB, Zielske SP, Gerson SL . Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem Suppl 2002; 38: 20–28.

    Article  PubMed  Google Scholar 

  40. Horwitz EM et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001; 97: 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  41. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Therapy 2000; 7: 24–30.

    Article  CAS  PubMed  Google Scholar 

  42. Bartlett JS, Wilcher R, Samulski RJ . Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 2000; 74: 2777–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bantel-Schaal U . Infection with adeno-associated parvovirus leads to increased sensitivity of mammalian cells to stress. Virology 1991; 182: 260–268.

    Article  CAS  PubMed  Google Scholar 

  44. Russell DW, Miller AD, Alexander IE . Adeno-associated virus vectors preferentially transduce cells in S phase. Proc Natl Acad Sci USA 1994; 91: 8915–8919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miao CH et al. Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. J Virol 2000; 74: 3793–3803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanlioglu S, Duan D, Engelhardt JF . Two independent molecular pathways for recombinant adeno-associated virus genome conversion occur after UV-C and E4 or f6 augmentation of transduction. Hum Gene Ther 1999; 10: 591–602.

    Article  CAS  PubMed  Google Scholar 

  47. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ulrich-Vinther M et al. Recombinant adeno-associated virus-mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis. J Bone Joint Surg Am 2002; 84-A: 1405–1412.

    Article  Google Scholar 

  49. Zhang X et al. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 2002; 109: 1405–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (PHS AR45791 and AR44220) and an unrestricted educational grant from DePuy AcroMed Inc. JJG, PTR, RJO and EMS are founders of LAGeT Inc.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, H., Goater, J., Tiyapatanaputi, P. et al. Light-activated gene transduction of recombinant adeno-associated virus in human mesenchymal stem cells. Gene Ther 11, 34–41 (2004). https://doi.org/10.1038/sj.gt.3302102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302102

Keywords

This article is cited by

Search

Quick links