Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment

Abstract

The suppression levels induced by gentamicin on premature stop codons, caused by primary nonsense mutations found in muscular dystrophy patients, were assessed using a very sensitive dual reporter gene assay. Results show that: (i) the effect of gentamicin on readthrough is similar in cultured cells and in vivo in murine skeletal muscle; (ii) a wide variability of readthrough efficiency is obtained, depending on the mutation tested; (iii) due to the complexity of readthrough regulation, efficiency cannot be predicted by the nucleotide context of the stop codon; (iv) only a minority of premature stop codons found in patients show a significant level of readthrough, and would thus be amenable to this pharmacological treatment, given our present understanding of the problem. These results probably provide an explanation for the relative failure of clinical trials reported to date using gentamicin to treat diseases due to premature stop codons, and emphasize that preliminary assays in cell culture provide valuable information concerning the potential efficiency of pharmacological treatments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Martin R et al. Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Mol Gen Genet 1989; 217: 411–418.

    Article  CAS  Google Scholar 

  2. Wimberly BT et al. Structure of the 30S ribosomal subunit. Nature 2000; 407: 327–339.

    Article  CAS  Google Scholar 

  3. Burke JF, Mogg AE . Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 1985; 13: 6265–6272.

    Article  CAS  Google Scholar 

  4. Bedwell DM et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997; 3: 1280–1284.

    Article  CAS  Google Scholar 

  5. Howard M, Frizzell RA, Bedwell DM . Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations (see comments). Nat Med 1996; 2: 467–469.

    Article  CAS  Google Scholar 

  6. Barton-Davis ER et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice (see comments). J Clin Invest 1999; 104: 375–381.

    Article  CAS  Google Scholar 

  7. Arakawa M et al. Negamycin can restore dystrophin in mdx skeletal muscle. Acta Myol 2001: 154–158.

  8. Du M et al. Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J Mol Med 2002; 80: 595–604.

    Article  CAS  Google Scholar 

  9. Dunant P, Walter MC, Karpati G, Lochmuller H . Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 2003; 27: 624–627.

    Article  CAS  Google Scholar 

  10. Politano L et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003; 22: 15–21.

    CAS  PubMed  Google Scholar 

  11. Tate WP, Poole ES, Mannering SA . Hidden infidelities of the translational stop signal. Prog Nucleic Acid Res Mol Biol 1996; 52: 293–335.

    Article  CAS  Google Scholar 

  12. Bonetti B, Fu LW, Moon J, Bedwell DM . The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 1995; 251: 334–345.

    Article  CAS  Google Scholar 

  13. Namy O, Hatin I, Rousset JP . Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2001; 2: 787–793.

    Article  CAS  Google Scholar 

  14. Howard MT et al. Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 2000; 48: 164–169.

    Article  CAS  Google Scholar 

  15. Manuvakhova M, Keeling K, Bedwell DM . Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 2000; 6: 1044–1055.

    Article  CAS  Google Scholar 

  16. Stahl G, Bidou L, Rousset JP, Cassan M . Versatile vectors to study recoding: conservation of rules between yeast and mammalian cells. Nucleic Acids Res 1995; 23: 1557–1560.

    Article  CAS  Google Scholar 

  17. Kahlmeter G, Dahlager JI . Aminoglycoside toxicity – a review of clinical studies published between 1975 and 1982. J Antimicrob Chemother 1984; 13 (Suppl A): 9–22.

    Article  Google Scholar 

  18. Allamand V, Guicheney P . Merosin-deficient congenital muscular dystrophy, autosomal recessive (MDC1A, MIM#156225, LAMA2 gene coding for alpha2 chain of laminin). Eur J Hum Genet 2002; 10: 91–94.

    Article  CAS  Google Scholar 

  19. Helbling-Leclerc A et al. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet 1995; 11: 216–218.

    Article  CAS  Google Scholar 

  20. Tome FM et al. Congenital muscular dystrophy with merosin deficiency. C R Acad Sci III 1994; 317: 351–357.

    CAS  PubMed  Google Scholar 

  21. Roberts RG, Gardner RJ, Bobrow M . Searching for the 1 in 2,400,000: a review of dystrophin gene point mutations. Hum Mutat 1994; 4: 1–11.

    Article  CAS  Google Scholar 

  22. Culbertson MR . RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet 1999; 15: 74–80.

    Article  CAS  Google Scholar 

  23. Ryder-Cook AS et al. Localization of the mdx mutation within the mouse dystrophin gene. EMBO J 1988; 7: 3017–3021.

    Article  CAS  Google Scholar 

  24. Beermann F et al. Misrouting of tyrosinase with a truncated cytoplasmic tail as a result of the murine platinum (cp) mutation. Exp Eye Res 1995; 61: 599–607.

    Article  CAS  Google Scholar 

  25. Perez N et al. Tetracycline transcriptional silencer tightly controls transgene expression after in vivo intramuscular electrotransfer: application to interleukin 10 therapy in experimental arthritis. Hum Gene Ther 2002; 13: 2161–2172.

    Article  CAS  Google Scholar 

  26. Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF . The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol 1991; 218: 365–373.

    Article  CAS  Google Scholar 

  27. Berteaux V, Rousset JP, Cassan M . UAG readthrough is not increased in vivo by Moloney murine leukemia virus infection. Biochimie 1991; 73: 1291–1293.

    Article  CAS  Google Scholar 

  28. Cassan M, Rousset JP . UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2001; 2: 3.

    Article  CAS  Google Scholar 

  29. Palmer E, Wilhem JM, Sherman F . Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 1979; 277: 148–150.

    Article  CAS  Google Scholar 

  30. Singh A, Ursic D, Davies J . Phenotypic suppression and misreading Saccharomyces cerevisiae. Nature 1979; 277: 146–148.

    Article  CAS  Google Scholar 

  31. Li G, Rice CM . The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. J Virol 1993; 67: 5062–5067.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pedersen WT, Curran JF . Effects of the nucleotide 3′ to an amber codon on ribosomal selection rates of suppressor tRNA and release factor-1. J Mol Biol 1991; 219: 231–241.

    Article  CAS  Google Scholar 

  33. Schroeder R, Waldsich C, Wank H . Modulation of RNA function by aminoglycoside antibiotics. EMBO J 2000; 19: 1–9.

    Article  CAS  Google Scholar 

  34. Clancy JP et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 2001; 163: 1683–1692.

    Article  CAS  Google Scholar 

  35. Wagner KR et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001; 49: 706–711.

    Article  CAS  Google Scholar 

  36. Wilschanski M et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med 2000; 161: 860–865.

    Article  CAS  Google Scholar 

  37. Namy O, Duchateau-Nguyen G, Rousset JP . Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol Microbiol 2002; 43: 641–652.

    Article  CAS  Google Scholar 

  38. Grentzmann G et al. A dual-luciferase reporter system for studying recoding signals. RNA 1998; 4: 479–486.

    Article  CAS  Google Scholar 

  39. Bidou L et al. In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal. RNA 1997; 3: 1153–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mir LM et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 1999; 96: 4262–4267.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are especially indebted to Maryse Godon for help with plasmid preparations. We are grateful to Laetitia Baudry for animal experiences and Jerome Poupiot for technical assistance. We wish to thank the ‘Association Française contre les Myopathies’ for providing DMD mutations. This work was supported by the ‘Association Française contre les Myopathies’ (contract 7757) and by the ‘Association pour la Recherche sur le Cancer’ (contract 4699).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidou, L., Hatin, I., Perez, N. et al. Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 11, 619–627 (2004). https://doi.org/10.1038/sj.gt.3302211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302211

Keywords

This article is cited by

Search

Quick links