Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Therapeutic short hairpin RNA expression in the liver: viral targets and vectors

Abstract

Over 500 million people worldwide are infected with one or more different and unrelated types of human hepatitis virus. Such individuals are at a high risk of developing acute or chronic hepatic disease, and ultimately dying from sequelae. Although a vaccine is available for hepatitis A and B virus, treatment options for chronically infected patients are limited, and particularly ineffective in case of hepatitis C virus (HCV) infection. A promising new avenue currently being explored is to harness the power of RNA interference for development of an antiviral therapy. The timing to pursue this particular approach is excellent, with the first in vivo animal models for HCV infection becoming available, and the technology for liver-specific expression of short hairpin RNAs advancing at a rapid pace. Here, we critically review these important current developments, and discuss the next steps to bring this novel approach into the clinics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Seeger C, Mason WS . Hepatitis B virus biology. Microbiol Mol Biol Rev 2000; 64: 51–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mast EE, Alter MJ, Margolis HS . Strategies to prevent and control hepatitis B and C virus infections: a global perspective. Vaccine 1999; 17: 1730–1733.

    CAS  PubMed  Google Scholar 

  3. Lau JY, Wright TL . Molecular virology and pathogenesis of hepatitis B. Lancet 1993; 342: 1335–1340.

    CAS  PubMed  Google Scholar 

  4. Lee WM . Hepatitis B virus infection. N Engl J Med 1997; 337: 1733–1745.

    CAS  PubMed  Google Scholar 

  5. Wands JR, Blum HE . Primary hepatocellular carcinoma. N Engl J Med 1991; 325: 729–731.

    CAS  PubMed  Google Scholar 

  6. Kao JH, Chen DS . Global control of hepatitis B virus infection. Lancet Infect Dis 2002; 2: 395–403.

    PubMed  Google Scholar 

  7. Arbuthnot P, Kew M . Hepatitis B virus and hepatocellular carcinoma. Int J Exp Pathol 2001; 82: 77–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ren XR, Zhou LJ, Luo GB, Lin B, Xu A . Inhibition of hepatitis B virus replication in 2.2.15 cells by expressed shRNA. J Viral Hepat 2005; 12: 236–242.

    PubMed  Google Scholar 

  9. Fishman JA, Rubin RH, Koziel MJ, Periera BJ . Hepatitis C virus and organ transplantation. Transplantation 1996; 62: 147–154.

    CAS  PubMed  Google Scholar 

  10. Bowen DG, Walker CM . Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 2005; 436: 946–952.

    CAS  PubMed  Google Scholar 

  11. Hoofnagle JH . Course and outcome of hepatitis C. Hepatology 2002; 36: S21–S29.

    PubMed  Google Scholar 

  12. Simmonds P . Genetic diversity and evolution of hepatitis C virus – 15 years on. J Gen Virol 2004; 85: 3173–3188.

    CAS  PubMed  Google Scholar 

  13. Hoofnagle JH, di Bisceglie AM . The treatment of chronic viral hepatitis. N Engl J Med 1997; 336: 347–356.

    CAS  PubMed  Google Scholar 

  14. Cheng TL, Chang WW, Su IJ, Lai MD, Huang W, Lei HY et al. Therapeutic inhibition of hepatitis B virus surface antigen expression by RNA interference. Biochem Biophys Res Commun 2005; 336: 820–830.

    CAS  PubMed  Google Scholar 

  15. Feld JJ, Hoofnagle JH . Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 2005; 436: 967–972.

    CAS  PubMed  Google Scholar 

  16. Chisari FV . Unscrambling hepatitis C virus–host interactions. Nature 2005; 436: 930–932.

    CAS  PubMed  Google Scholar 

  17. Wieland SF, Chisari FV . Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol 2005; 79: 9369–9380.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003; 21: 639–644.

    Article  CAS  PubMed  Google Scholar 

  19. Marion PL, Salazar FH, Liittschwager K, Bordier BB, Seeger C, Winters MA et al. A transgenic mouse lineage useful for testing antivirals targeting hepatitis B virus. In: Schinazi RF, Rice C, Sommadossi J-P (eds). Frontiers in Viral Hepatitis. Elsevier Science NL: Amsterdam, 2003, pp 197–209.

    Google Scholar 

  20. Guidotti LG, Matzke B, Schaller H, Chisari FV . High-level hepatitis B virus replication in transgenic mice. J Virol 1995; 69: 6158–6169.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindenbach BD, Rice CM . Unravelling hepatitis C virus replication from genome to function. Nature 2005; 436: 933–938.

    CAS  PubMed  Google Scholar 

  22. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M . Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989; 244: 359–362.

    CAS  PubMed  Google Scholar 

  23. Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R . Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 1999; 285: 110–113.

    CAS  PubMed  Google Scholar 

  24. Blight KJ, Kolykhalov AA, Rice CM . Efficient initiation of HCV RNA replication in cell culture. Science 2000; 290: 1972–1974.

    CAS  PubMed  Google Scholar 

  25. Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, Rinfret A et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med 2001; 7: 927–933.

    CAS  PubMed  Google Scholar 

  26. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 2005; 11: 791–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC et al. Complete replication of hepatitis C virus in cell culture. Science 2005; 309: 623–626.

    CAS  PubMed  Google Scholar 

  28. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR et al. Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 2005; 102: 9294–9299.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Arbuthnot P, Carmona S, Ely A . Exploiting the RNA interference pathway to counter hepatitis B virus replication. Liver Int 2005; 25: 9–15.

    CAS  PubMed  Google Scholar 

  30. Locarnini S . Therapies for hepatitis B: where to from here? Gastroenterology 2005; 128: 789–792.

    PubMed  Google Scholar 

  31. Shlomai A, Shaul Y . RNA interference – small RNAs effectively fight viral hepatitis. Liver Int 2004; 24: 526–531.

    CAS  PubMed  Google Scholar 

  32. Stevenson M . Therapeutic potential of RNA interference. N Engl J Med 2004; 351: 1772–1777.

    PubMed  Google Scholar 

  33. Taylor JA, Naoumov NV . The potential of RNA interference as a tool in the management of viral hepatitis. J Hepatol 2005; 42: 139–144.

    CAS  PubMed  Google Scholar 

  34. Gitlin L, Andino R . Nucleic acid-based immune system: the antiviral potential of mammalian RNA silencing. J Virol 2003; 77: 7159–7165.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Radhakrishnan SK, Layden TJ, Gartel AL . RNA interference as a new strategy against viral hepatitis. Virology 2004; 323: 173–181.

    CAS  PubMed  Google Scholar 

  36. Davidson BL . Hepatic diseases – hitting the target with inhibitory RNAs. N Engl J Med 2003; 349: 2357–2359.

    CAS  PubMed  Google Scholar 

  37. Randall G, Rice CM . Interfering with hepatitis C virus RNA replication. Virus Res 2004; 102: 19–25.

    CAS  PubMed  Google Scholar 

  38. De Francesco R, Migliaccio G . Challenges and successes in developing new therapies for hepatitis C. Nature 2005; 436: 953–960.

    CAS  PubMed  Google Scholar 

  39. Wilson JA, Richardson CD . Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J Virol 2005; 79: 7050–7058.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Uprichard SL, Boyd B, Althage A, Chisari FV . Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA 2005; 102: 773–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003; 9: 347–351.

    CAS  PubMed  Google Scholar 

  42. Zender L, Hutker S, Liedtke C, Tillmann HL, Zender S, Mundt B et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA 2003; 100: 7797–7802.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Yamada O, Sakamoto T, Yoshida H, Iwai T, Matsushita Y et al. Down-regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus. Virology 2004; 320: 135–143.

    CAS  PubMed  Google Scholar 

  44. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P . Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005; 309: 1577–1581.

    CAS  PubMed  Google Scholar 

  45. Shlomai A, Shaul Y . Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 2003; 37: 764–770.

    CAS  PubMed  Google Scholar 

  46. Chen Y, Du D, Wu J, Chan CP, Tan Y, Kung HF et al. Inhibition of hepatitis B virus replication by stably expressed shRNA. Biochem Biophys Res Commun 2003; 311: 398–404.

    CAS  PubMed  Google Scholar 

  47. Zhang XN, Xiong W, Wang JD, Hu YW, Xiang L, Yuan ZH . siRNA-mediated inhibition of HBV replication and expression. World J Gastroenterol 2004; 10: 2967–2971.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu J, Guo Y, Xue CF, Li YH, Huang YX, Ding J et al. Effect of vector-expressed siRNA on HBV replication in hepatoblastoma cells. World J Gastroenterol 2004; 10: 1898–1901.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ni Q, Chen Z, Yao HP, Yang ZG, Liu KZ, Wu LL . Inhibition of human La protein by RNA interference downregulates hepatitis B virus mRNA in 2.2.15 cells. World J Gastroenterol 2004; 10: 2050–2054.

    PubMed  PubMed Central  Google Scholar 

  50. Moore MD, McGarvey MJ, Russell RA, Cullen BR, McClure MO . Stable inhibition of hepatitis B virus proteins by small interfering RNA expressed from viral vectors. J Gene Med 2005; 7: 918–925.

    CAS  PubMed  Google Scholar 

  51. Yang ZG, Chen Z, Ni Q, Xu N, Shao JB, Yao HP . Inhibition of hepatitis B virus surface antigen expression by small hairpin RNA in vitro. World J Gastroenterol 2005; 11: 498–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu HL, Huang LR, Huang CC, Lai HL, Liu CJ, Huang YT et al. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant. Gastroenterology 2005; 128: 708–716.

    CAS  PubMed  Google Scholar 

  53. Kanda T, Zhang B, Kusov Y, Yokosuka O, Gauss-Muller V . Suppression of hepatitis A virus genome translation and replication by siRNAs targeting the internal ribosomal entry site. Biochem Biophys Res Commun 2005; 330: 1217–1223.

    CAS  PubMed  Google Scholar 

  54. Yokota T, Sakamoto N, Enomoto N, Tanabe Y, Miyagishi M, Maekawa S et al. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Rep 2003; 4: 602–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilson JA, Jayasena S, Khvorova A, Sabatinos S, Rodrigue-Gervais IG, Arya S et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc Natl Acad Sci USA 2003; 100: 2783–2788.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kronke J, Kittler R, Buchholz F, Windisch MP, Pietschmann T, Bartenschlager R et al. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J Virol 2004; 78: 3436–3446.

    PubMed  PubMed Central  Google Scholar 

  57. Takigawa Y, Nagano-Fujii M, Deng L, Hidajat R, Tanaka M, Mizuta H et al. Suppression of hepatitis C virus replicon by RNA interference directed against the NS3 and NS5B regions of the viral genome. Microbiol Immunol 2004; 48: 591–598.

    CAS  PubMed  Google Scholar 

  58. Wang Q, Contag CH, Ilves H, Johnston BH, Kaspar RL . Small hairpin RNAs efficiently inhibit hepatitis C IRES-mediated gene expression in human tissue culture cells and a mouse model. Mol Ther 2005; 12: 562–568.

    CAS  PubMed  Google Scholar 

  59. Nakagawa M, Sakamoto N, Tanabe Y, Koyama T, Itsui Y, Takeda Y et al. Suppression of hepatitis C virus replication by cyclosporin a is mediated by blockade of cyclophilins. Gastroenterology 2005; 129: 1031–1041.

    CAS  PubMed  Google Scholar 

  60. Korf M, Jarczak D, Beger C, Manns MP, Kruger M . Inhibition of hepatitis C virus translation and subgenomic replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors. J Hepatol 2005; 43: 225–234.

    CAS  PubMed  Google Scholar 

  61. Prabhu R, Vittal P, Yin Q, Flemington E, Garry R, Robichaux WH et al. Small interfering RNA effectively inhibits protein expression and negative strand RNA synthesis from a full-length hepatitis C virus clone. J Med Virol 2005; 76: 511–519.

    CAS  PubMed  Google Scholar 

  62. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA . RNA interference in adult mice. Nature 2002; 418: 38–39.

    CAS  PubMed  Google Scholar 

  63. Grimm D, Kleinschmidt JA . Progress in adeno-associated virus type 2 vector production: promises and prospects for clinical use. Hum Gene Ther 1999; 10: 2445–2450.

    CAS  PubMed  Google Scholar 

  64. Ehrhardt A, Xu H, Dillow AM, Bellinger DA, Nichols TC, Kay MA . A gene-deleted adenoviral vector results in phenotypic correction of canine hemophilia B without liver toxicity or thrombocytopenia. Blood 2003; 102: 2403–2411.

    CAS  PubMed  Google Scholar 

  65. Grimm D, Zhou S, Nakai H, Thomas CE, Storm TA, Fuess S et al. Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood 2003; 102: 2412–2419.

    CAS  PubMed  Google Scholar 

  66. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    CAS  PubMed  Google Scholar 

  67. Kay MA, Nakai H . Looking into the safety of AAV vectors. Nature 2003; 424: 251.

    CAS  PubMed  Google Scholar 

  68. Grimm D, Kay MA . From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 2003; 3: 281–304.

    CAS  PubMed  Google Scholar 

  69. Grimm D, Pandey K, Kay MA . Adeno-associated virus vectors for short hairpin RNA expression. Methods Enzymol 2005; 392: 381–405.

    CAS  PubMed  Google Scholar 

  70. Ehrhardt A, Kay MA . A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo. Blood 2002; 99: 3923–3930.

    CAS  PubMed  Google Scholar 

  71. Kay MA, Holterman AX, Meuse L, Gown A, Ochs HD, Linsley PS et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat Genet 1995; 11: 191–197.

    CAS  PubMed  Google Scholar 

  72. Schowalter DB, Meuse L, Wilson CB, Linsley PS, Kay MA . Constitutive expression of murine CTLA4Ig from a recombinant adenovirus vector results in prolonged transgene expression. Gene Therapy 1997; 4: 853–860.

    CAS  PubMed  Google Scholar 

  73. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL . A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996; 93: 13565–13570.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Parks RJ, Graham FL . A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J Virol 1997; 71: 3293–3298.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chuah MK, Schiedner G, Thorrez L, Brown B, Johnston M, Gillijns V et al. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. Blood 2003; 101: 1734–1743.

    CAS  PubMed  Google Scholar 

  76. Morral N, O'Neal W, Rice K, Leland M, Kaplan J, Piedra PA et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci USA 1999; 96: 12816–12821.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 2002; 13: 163–175.

    CAS  PubMed  Google Scholar 

  78. Ehrhardt A, Kay MA . Gutted adenovirus: a rising star on the horizon? Gene Therapy 2005; 12: 1540–1541.

    CAS  PubMed  Google Scholar 

  79. Grimm D . Production methods for gene transfer vectors based on adeno-associated virus serotypes. Methods 2002; 28: 146–157.

    CAS  PubMed  Google Scholar 

  80. Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA . Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001; 75: 6969–6976.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakai H, Thomas CE, Storm TA, Fuess S, Powell S, Wright JF et al. A limited number of transducible hepatocytes restricts a wide-range linear vector dose response in recombinant adeno-associated virus-mediated liver transduction. J Virol 2002; 76: 11343–11349.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakai H, Fuess S, Storm TA, Muramatsu S, Nara Y, Kay MA . Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005; 79: 214–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Thomas CE, Storm TA, Huang Z, Kay MA . Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X et al. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther 2003; 8: 911–917.

    CAS  PubMed  Google Scholar 

  85. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ . Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Therapy 2003; 10: 2112–2118.

    CAS  PubMed  Google Scholar 

  86. McCarty DM, Monahan PE, Samulski RJ . Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy 2001; 8: 1248–1254.

    CAS  PubMed  Google Scholar 

  87. Persengiev SP, Zhu X, Green MR . Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004; 10: 12–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pebernard S, Iggo RD . Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 2004; 72: 103–111.

    CAS  PubMed  Google Scholar 

  89. Jackson AL, Linsley PS . Noise amidst the silence: off-target effects of siRNAs? Trends Genet 2004; 20: 521–524.

    CAS  PubMed  Google Scholar 

  90. Fish RJ, Kruithof EK . Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol Biol 2004; 5: 9.

    PubMed  PubMed Central  Google Scholar 

  91. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR . Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003; 5: 834–839.

    CAS  PubMed  Google Scholar 

  92. Saxena S, Jonsson ZO, Dutta A . Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 2003; 278: 44312–44319.

    CAS  PubMed  Google Scholar 

  93. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    CAS  PubMed  Google Scholar 

  94. Yant SR, Ehrhardt A, Mikkelsen JG, Meuse L, Pham T, Kay MA . Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 2002; 20: 999–1005.

    CAS  PubMed  Google Scholar 

  95. Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA 2004; 101: 10380–10385.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Denti MA, Rosa A, Sthandier O, De Angelis FG, Bozzoni I . A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol Ther 2004; 10: 191–199.

    CAS  PubMed  Google Scholar 

  97. Xia H, Mao Q, Paulson HL, Davidson BL . siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002; 20: 1006–1010.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, D., Kay, M. Therapeutic short hairpin RNA expression in the liver: viral targets and vectors. Gene Ther 13, 563–575 (2006). https://doi.org/10.1038/sj.gt.3302727

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302727

Keywords

This article is cited by

Search

Quick links