Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus expressing interleukin-1 receptor antagonist alleviates allergic airway inflammation in a murine model of asthma

Abstract

Interleukin-1 (IL-1) is a proinflammatory cytokine and IL-1 receptor antagonist (IL-1ra) is a natural inhibitor that binds to IL-1 receptor type I without inducing signal transduction. It is suggested that IL-1 is required for allergen-specific T helper type 2 cell activation and the development of airway hyper-responsiveness (AHR), but the immunologic effect of exogenous IL-1ra in allergic asthma remains unclear. To examine the effect of IL-1ra on airway inflammation and immunoeffector cells in allergic asthma, recombinant adenovirus expressing human IL-1ra (Ad-hIL-1ra) was delivered intranasally into ovalbumin (OVA)-immunized mice. Single intranasal administration of Ad-hIL-1ra before airway antigen challenge in OVA-immunized mice significantly decreased the severity of AHR and reduced pulmonary infiltration of eosinophils and neutrophils. Suppression of IL-5 and eotaxin with concomitant enhancement of interferon gamma in bronchoalveolar lavage fluid was also noted in OVA-immunized mice by administration of Ad-hIL-1ra. In addition, histological studies showed that Ad-hIL-1ra was able to decrease OVA-induced peribronchial inflammation. Taken together, our results indicated that administration of Ad-hIL-1ra may have therapeutic potential for the immunomodulatory treatment of allergic asthma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Leong KP, Huston DP . Understanding the pathogenesis of allergic asthma using mouse models. Ann Allergy Asthma Immunol 2001; 87: 96–109.

    Article  CAS  Google Scholar 

  2. Romagnani S . Biology of human TH1 and TH2 cells. J Clin Immunol 1995; 15: 121–129.

    Article  CAS  Google Scholar 

  3. Chung KF, Barnes PJ . Cytokines in asthma. Thorax 1999; 54: 825–857.

    Article  CAS  Google Scholar 

  4. Staats HF, Ennis Jr FA . IL-1 is an effective adjuvant for mucosal and systemic immune responses when coadministered with protein immunogens. J Immunol 1999; 162: 6141–6147.

    CAS  PubMed  Google Scholar 

  5. Broide DH, Campbell K, Gifford T, Sriramarao P . Inhibition of eosinophilic inflammation in allergen-challenged, IL-1 receptor type 1-deficient mice is associated with reduced eosinophil rolling and adhesion on vascular endothelium. Blood 2000; 95: 263–269.

    CAS  PubMed  Google Scholar 

  6. Okada S, Inoue H, Yamauchi K, Iijima H, Ohkawara Y, Takishima T et al. Potential role of interleukin-1 in allergen-induced late asthmatic reactions in guinea pigs: suppressive effect of interleukin-1 receptor antagonist on late asthmatic reaction. J Allergy Clin Immunol 1995; 95: 1236–1245.

    Article  CAS  Google Scholar 

  7. Hakonarson H, Herrick DJ, Serrano PG, Grunstein MM . Autocrine role of interleukin-1beta in altered responsiveness of atopic asthmatic sensitized airway smooth muscle. J Clin Invest 1997; 99: 117–124.

    Article  CAS  Google Scholar 

  8. Nakae S, Komiyama Y, Yokoyama H, Nambu A, Umeda M, Iwase M et al. IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol 2003; 15: 483–490.

    Article  CAS  Google Scholar 

  9. Greenbaum LA, Horowitz JB, Woods A, Pasqualini T, Reich EP, Bottomly K . Autocrine growth of CD4+ T cells. Differential effects of IL-1 on helper and inflammatory T cells. J Immunol 1988; 140: 1555–1560.

    CAS  PubMed  Google Scholar 

  10. Lichtman AH, Chin J, Schmidt JA, Abbas AK . Role of interleukin-1 in the activation of T lymphocytes. Proc Natl Acad Sci USA 1988; 85: 9699–9703.

    Article  CAS  Google Scholar 

  11. Dinarello CA . Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77: 1627–1652.

    CAS  Google Scholar 

  12. Huber M, Beuscher HU, Rohwer P, Kurrle R, Rollinghoff M, Lohoff M . Costimulation via TCR and IL-1 receptor reveals a novel IL-1α-mediated autocrine pathway of Th2 cell proliferation. J Immunol 1998; 160: 4242–4247.

    CAS  PubMed  Google Scholar 

  13. al-Ramadi BK, Welte T, Fernandez-Cabezudo MJ, Galadari S, Dittel B, Fu XY et al. The Src-protein tyrosine kinase Lck is required for IL-1-mediated costimulatory signaling in Th2 cells. J Immunol 2001; 167: 6827–6833.

    Article  CAS  Google Scholar 

  14. Lin KW, Chen SC, Chang FH, Kung JT, Hsu BR, Lin RH . The roles of interleukin-1 and interleukin-1 receptor antagonist in antigen-specific immune responses. J Biomed Sci 2002; 9: 26–33.

    Article  CAS  Google Scholar 

  15. Nakae S, Asano M, Horai R, Iwakura Y . Interleukin-1β, but not interleukin-1α, is required for T-cell-dependent antibody production. Immunology 2001; 104: 402–409.

    Article  CAS  Google Scholar 

  16. Dripps DJ, Brandhuber BJ, Thompson RC, Eisenberg SP . Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. J Biol Chem 1991; 266: 10331–10336.

    CAS  Google Scholar 

  17. Arend WP, Malyak M, Guthridge CJ, Gabay C . Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 1998; 16: 27–55.

    Article  CAS  Google Scholar 

  18. Mao XQ, Kawai M, Yamashita T, Enomoto T, Dake Y, Sasaki S et al. Imbalance production between interleukin-1β (IL-1β) and IL-1 receptor antagonist (IL-1ra) in bronchial asthma. Biochem Biophys Res Commun 2000; 276: 607–612.

    Article  CAS  Google Scholar 

  19. Selig W, Tocker J . Effect of interleukin-1 receptor antagonist on antigen-induced pulmonary responses in guinea pigs. Eur J Pharmacol 1992; 213: 331–336.

    Article  CAS  Google Scholar 

  20. Keane-Myers AM, Miyazaki D, Liu G, Dekaris I, Ono S, Dana MR . Prevention of allergic eye disease by treatment with IL-1 receptor antagonist. Invest Ophthalmol Vis Sci 1999; 40: 3041–3046.

    CAS  PubMed  Google Scholar 

  21. Arend WP, Welgus HG, Thompson RC, Eisenberg SP . Biological properties of recombinant human monocyte-derived interleukin-1 receptor antagonist. J Clin Invest 1990; 85: 1694–1697.

    Article  CAS  Google Scholar 

  22. Fischer E, Marano MA, Barber AE, Hudson A, Lee K, Rock CS et al. A comparison between the effects of interleukin-1 administration and sublethal endotoxemia in primates. Am J Physiol 1991; 261: 442–452.

    Google Scholar 

  23. Suzuki M, Suzuki S, Yamamoto N, Komatsu S, Inoue S, Hashiba T et al. Immune responses against replication-deficient adenovirus inhibit ovalbumin-specific allergic reactions in mice. Hum Gene Ther 2000; 11: 827–838.

    Article  CAS  Google Scholar 

  24. Behera AK, Kumar M, Lockey RF, Mohapatra SS . Adenovirus-mediated interferon gamma gene therapy for allergic asthma: involvement of interleukin 12 and STAT4 signaling. Hum Gene Ther 2002; 13: 1697–1709.

    Article  CAS  Google Scholar 

  25. Walter DM, Wong CP, DeKruyff RH, Berry GJ, Levy S, Umetsu DT et al. IL-18 gene transfer by adenovirus prevents the development of and reverses established allergen-induced airway hyperreactivity. J Immunol 2001; 166: 6392–6398.

    Article  CAS  Google Scholar 

  26. Granowitz EV, Porat R, Mier JW, Pribble JP, Stiles DM, Bloedow DC et al. Pharmacokinetics, safety and immunomodulatory effects of human recombinant interleukin-1 receptor antagonist in healthy humans. Cytokine 1992; 4: 353–360.

    Article  CAS  Google Scholar 

  27. Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NF et al. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med 1994; 179: 881–887.

    Article  CAS  Google Scholar 

  28. Kirby JG, Hargreave FE, Gleich GJ, O'Byrne PM . Bronchoalveolar cell profiles of asthmatic and nonasthmatic subjects. Am Rev Respir Dis 1987; 136: 379–383.

    Article  CAS  Google Scholar 

  29. Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA et al. Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids. J Clin Invest 1997; 99: 1767–1773.

    Article  CAS  Google Scholar 

  30. Dinarello CA . Biologic basis for interleukin-1 in disease. Blood 1996; 87: 2095–2147.

    CAS  Google Scholar 

  31. Hybertson BM, Lee YM, Repine JE . Phagocytes and acute lung injury: dual roles for interleukin-1. Ann NY Acad Sci 1997; 832: 266–273.

    Article  CAS  Google Scholar 

  32. Lee YM, Hybertson BM, Cho HG, Terada LS, Cho O, Repine AJ et al. Platelet-activating factor contributes to acute lung leak in rats given interleukin-1 intratracheally. Am J Physiol Lung Cell Mol Physiol 2000; 279: 75–80.

    Article  Google Scholar 

  33. Dinarello C, Wolff SM . The role of interleukin-1 in disease. N Engl J Med 1993; 328: 106–113.

    Article  CAS  Google Scholar 

  34. Bochner BS, Luscinskas FW, Gimbrone Jr MA, Newman W, Sterbinsky SA, Derse-Anthony CP et al. Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J Exp Med 1991; 173: 1553–1557.

    Article  CAS  Google Scholar 

  35. Baskar P, Pincus SH . Selective regulation of eosinophil degranulation by interleukin-1β. Proc Soc Exp Biol Med 1992; 199: 249–254.

    Article  CAS  Google Scholar 

  36. Nakae S, Asano M, Horai R, Sakaguchi N, Iwakura Y . IL-1 enhances T cell-dependent antibody production through induction of CD40 ligand and OX40 on T cells. J Immunol 2001; 167: 90–97.

    Article  CAS  Google Scholar 

  37. Goldblum SE, Jay M, Yoneda K, Cohen DA, McClain CJ, Gillespie MN . Monokine-induced acute lung injury in rabbits. J Appl Physiol 1987; 63: 2093–2100.

    Article  CAS  Google Scholar 

  38. Schleimer RP, Benenati SV, Friedman B, Bochner BS . Do cytokines play a role in leukocyte recruitment and activation in the lung? Am Rev Respir Dis 1991; 143: 1169–1174.

    Article  CAS  Google Scholar 

  39. Watson ML, Smith D, Bourne AD, Thompson RC, Westwick J . Cytokines contribute to airway dysfunction in antigen-challenged guinea pigs: inhibition of airway hyperreactivity, pulmonary eosinophil accumulation, and tumor necrosis factor generation by pretreatment with an interleukin-1 receptor antagonist. Am J Respir Cell Mol Biol 1993; 8: 365–369.

    Article  CAS  Google Scholar 

  40. Taube C, Nick JA, Siegmund B, Duez C, Takeda K, Rha YH et al. Inhibition of early airway neutrophilia does not affect development of airway hyperresponsiveness. Am J Respir Cell Mol Biol 2004; 30: 837–843.

    Article  CAS  Google Scholar 

  41. Whelan R, Kim C, Chen M, Leiter J, Grunstein MM, Hakonarson H . Role and regulation of interleukin-1 molecules in pro-asthmatic sensitised airway smooth muscle. Eur Respir J 2004; 24: 559–567.

    Article  CAS  Google Scholar 

  42. McCoy RD, Davidson BL, Roessler BJ, Huffnagle GB, Simon RH . Expression of human interleukin-1 receptor antagonist in mouse lungs using a recombinant adenovirus: effects on vector-induced inflammation. Gene Therapy 1995; 2: 437–442.

    CAS  PubMed  Google Scholar 

  43. Irikura VM, Hirsch E, Hirsh D . Effects of interleukin-1 receptor antagonist overexpression on infection by Listeria monocytogenes. Infect Immun 1999; 67: 1901–1909.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lack G, Bradley KL, Hamelmann E, Renz H, Loader J, Leung DY et al. Nebulized but not parenteral IFN-γ decreases IgE production and normalizes airways function in a murine model of allergen sensitization. J Immunol 1994; 152: 2546–2554.

    CAS  PubMed  Google Scholar 

  45. Iwamoto I, Nakajima H, Endo H, Yoshida S . Interferon-γ regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells. J Exp Med 1993; 177: 573–576.

    Article  CAS  Google Scholar 

  46. Minter RM, Rectenwald JE, Fukuzuka K, Tannahill CL, La Face D, Tsai V et al. TNF-α receptor signaling and IL-10 gene therapy regulate the innate and humoral immune responses to recombinant adenovris in the lung. J Immunol 2000; 164: 443–451.

    Article  CAS  Google Scholar 

  47. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  Google Scholar 

  48. Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG et al. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 1997; 156: 766–775.

    Article  CAS  Google Scholar 

  49. Myou S, Leff AR, Myo S, Boetticher E, Tong J, Meliton AY et al. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. J Exp Med 2003; 198: 1573–1582.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from National Science Council of Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B-L Chiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CC., Fu, CL., Yang, YH. et al. Adenovirus expressing interleukin-1 receptor antagonist alleviates allergic airway inflammation in a murine model of asthma. Gene Ther 13, 1414–1421 (2006). https://doi.org/10.1038/sj.gt.3302798

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302798

Keywords

This article is cited by

Search

Quick links