Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adeno-associated viral gene transfer of transforming growth factor-β1 to human mesenchymal stem cells improves cartilage repair

Abstract

Bone marrow cells are routinely accessed clinically for cartilage repair. This study was performed to determine whether adeno-associated virus (AAV) effectively transduces human bone marrow-derived mesenchymal stem cells (hMSC) in vitro, whether AAV infection interferes with hMSC chondrogenesis and whether AAV-transforming growth factor-beta-1 (TGF-β1)-transduced hMSC can improve cartilage repair in vivo. Adult hMSC were transduced with AAV-green fluorescent protein (GFP) or AAV-transforming growth factor β1 (TGFβ1) and studied in pellet cultures. For in vivo studies, AAV–GFP and AAV–TGF-β1-transduced hMSCs were implanted into osteochondral defects of 21 athymic rats. GFP was detected using fluorescent microscopy. Cartilage repair was assessed using gross and histological analysis at 4, 8 and 12 weeks. In pellet culture, GFP expression was visualized in situ through 21 days in vitro. In vivo GFP transgene expression was observed by in situ fluorescent surface imaging in 100% of GFP implanted defects at 2 , 67% at 8 and 17% at 12 weeks. Improved cartilage repair was observed in osteochondral defects implanted with AAV–TGF-β1-transduced hMSC at 12 weeks (P=0.0047). These results show that AAV is a suitable vector for gene delivery to improve the cartilage repair potential of human mesenchymal stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. O'Driscoll SW . The healing and regeneration of articular cartilage. J Bone Joint Surg Am 1998; 80: 1795–1812.

    Article  CAS  PubMed  Google Scholar 

  2. WHO Technical Report on the Burden of Musculoskeletal Conditions 2003. http://www.who.int/ncd/cra. 2003.

  3. Yelin E, Callahan LF . The economic cost and social and psychological impact of musculoskeletal conditions. National Arthritis Data Work Groups. Arthritis Rheum 1995; 38: 1351–1362.

    Article  CAS  PubMed  Google Scholar 

  4. Centers for Disease Control and Prevention. Prevalence of disabilities and associated health conditions among adults: United States, 1999. Morb Mortal Wkly Rep 2001; 50: 120–125.

    Google Scholar 

  5. Hootman JM, Helmick CG . Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum 2006; 54: 226–229.

    Article  PubMed  Google Scholar 

  6. Dervin GF, Stiell IG, Rody K, Grabowski J . Effect of arthroscopic debridement for osteoarthritis of the knee on health-related quality of life. J Bone Joint Surg Am 2003; 85-A: 10–19.

    Article  Google Scholar 

  7. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004; 86-A: 455–464.

    Article  Google Scholar 

  8. Hangody L, Rathonyi GK, Duska Z, Vasarhelyi G, Fules P, Modis L . Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg Am 2004; 86-A: 65–72.

    Article  Google Scholar 

  9. Tuli R, Li WJ, Tuan RS . Current state of cartilage tissue engineering. Arthritis Res Ther 2003; 5: 235–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landis WJ, Jacquet R, Hillyer J, Zhang J, Siperko L, Chubinskaya S et al. The potential of tissue engineering in orthopedics. Orthop Clin North Am 2005; 36: 97–104.

    Article  PubMed  Google Scholar 

  11. Temenoff JS, Mikos AG . Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000; 21: 431–440.

    Article  CAS  PubMed  Google Scholar 

  12. Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D . Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 1995; 29: 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  13. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994; 76: 579–592.

    Article  CAS  PubMed  Google Scholar 

  14. O'Driscoll SW, Fitzsimmons JS . The importance of procedure specific training in harvesting periosteum for chondrogenesis. Clin Orthop Relat Res 2000; 380: 269–278.

    Article  Google Scholar 

  15. Jackson DW, Lalor PA, Aberman HM, Simon TM . Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am 2001; 83-A: 53–64.

    Article  CAS  Google Scholar 

  16. Shapiro F, Koide S, Glimcher MJ . Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993; 75: 532–553.

    Article  CAS  PubMed  Google Scholar 

  17. Steadman JR, Miller BS, Karas SG, Schlegel TF, Briggs KK, Hawkins RJ . The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg 2003; 16: 83–86.

    PubMed  Google Scholar 

  18. Tuan RS, Boland G, Tuli R . Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 2003; 5: 32–45.

    Article  CAS  PubMed  Google Scholar 

  19. Yoo JU, Mandell I, Angele P, Johnstone B . Chondrogenitor cells and gene therapy. Clin Orthop Relat Res 2000; 379 (Suppl): S164–S170.

    Article  Google Scholar 

  20. Kato Y, Iwamoto M, Koike T, Suzuki F, Takano Y . Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor beta and serum factors. Proc Natl Acad Sci USA 1988; 85: 9552–9556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawamura K, Chu CR, Sobajima S, Robbins PD, Fu FH, Izzo NJ et al. Adenoviral-mediated transfer of TGF-beta1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures. Exp Hematol 2005; 33: 865–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morales TI, Roberts AB . Transforming growth factor beta regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J Biol Chem 1988; 263: 12828–12831.

    CAS  PubMed  Google Scholar 

  23. Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R et al. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol 1997; 139: 541–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ et al. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003; 278: 41227–41236.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang XY, La Russa VF, Bao L, Kolls J, Schwarzenberger P, Reiser J . Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 2002; 5: 555–565.

    Article  CAS  PubMed  Google Scholar 

  26. Bangari DS, Mittal SK . Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther 2006; 6: 215–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S et al. Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 2005; 3: 848–858.

    Article  CAS  PubMed  Google Scholar 

  28. Lewis PF, Emerman M . Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994; 68: 510–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Carter PJ, Samulski RJ . Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med 2000; 6: 17–27.

    CAS  PubMed  Google Scholar 

  30. Flotte TR, Carter BJ . Adeno-associated virus vectors for gene therapy. Gene Ther 1995; 2: 357–362.

    CAS  PubMed  Google Scholar 

  31. Madry H, Cucchiarini M, Terwilliger EF, Trippel SB . Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum Gene Ther 2003; 14: 393–402.

    Article  CAS  PubMed  Google Scholar 

  32. Ulrich-Vinther M, Duch MR, Soballe K, O'Keefe RJ, Schwarz EM, Pedersen FS . In vivo gene delivery to articular chondrocytes mediated by an adeno-associated virus vector. J Orthop Res 2004; 22: 726–734.

    Article  CAS  PubMed  Google Scholar 

  33. Evans CH, Robbins PD, Ghivizzani SC, Wasko MC, Tomaino MM, Kang R et al. Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc Natl Acad Sci USA 2005; 102: 8698–8703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mierisch CM, Wilson HA, Turner MA, Milbrandt TA, Berthoux L, Hammarskjold ML et al. Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg Am 2003; 85-A: 1757–1767.

    Article  Google Scholar 

  35. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG . Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19: 477–484.

    Article  PubMed  Google Scholar 

  36. Cook SD, Patron LP, Salkeld SL, Rueger DC . Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg Am 2003; 85-A (Suppl 3): 116–123.

    Article  Google Scholar 

  37. Grande DA, Mason J, Light E, Dines D . Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am 2003; 85-A (Suppl 2): 111–116.

    Article  Google Scholar 

  38. Sellers RS, Peluso D, Morris EA . The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1997; 79: 1452–1463.

    Article  CAS  PubMed  Google Scholar 

  39. Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 2006; 54: 433–442.

    Article  CAS  PubMed  Google Scholar 

  40. McPhee SW, Janson CG, Li C, Samulski RJ, Camp AS, Francis J et al. Immune responses to AAV in a phase I study for Canavan disease. J Gene Med 2006; 8: 577–588.

    Article  CAS  PubMed  Google Scholar 

  41. Rehman KK, Wang Z, Bottino R, Balamurugan AN, Trucco M, Li J et al. Efficient gene delivery to human and rodent islets with double-stranded (ds) AAV-based vectors. Gene Therapy 2005; 12: 1313–1323.

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Han B, Li K, Jiao LR, Habib N, Wang H . TGF-beta 1 inhibits HLA-DR and beta 2-microglobulin expression in HeLa cells induced with r-IFN. Transplant Proc 1999; 31: 2143–2145.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X . Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Therapy 2003; 10: 2105–2111.

    Article  CAS  PubMed  Google Scholar 

  44. Ferretti M, Marra KG, Kobayashi K, Defail AJ, Chu CR . Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Eng 2006; 12: 2657–2663.

    Article  CAS  PubMed  Google Scholar 

  45. Holland TA, Bodde EW, Cuijpers VM, Baggett LS, Tabata Y, Mikos AG et al. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthr Cartilage 2007; 15: 187–197.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Albert D Donnenberg PhD, Vera Donnenburg PhD, Yong Li PhD, Nicholas J Izzo PhD and Lesa Lewis Werkmeister for their technical advice and assistance. This work was funded by Pittsburgh Tissue Engineering Initiative and the Department of Defense (DAMD 17-02-1-0717 subcontract to CRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C R Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagnotto, M., Wang, Z., Karpie, J. et al. Adeno-associated viral gene transfer of transforming growth factor-β1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 14, 804–813 (2007). https://doi.org/10.1038/sj.gt.3302938

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302938

Keywords

This article is cited by

Search

Quick links