Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of HIV-1 replication with designed miRNAs expressed from RNA polymerase II promoters

Abstract

Small interfering RNA (siRNA) mediates sequence-specific RNA cleavage and represents a potential approach to treat the infection of human immunodeficiency virus (HIV). Expression of a single siRNA species frequently led to the emergence of HIV escape variants. Thus, multiple siRNAs targeted to different regions in the HIV-1 genome may be required. However, overexpression of different anti-HIV siRNA genes from multiple pol III promoters can induce cell toxicity, thus may not be a viable option in the setting of human gene therapy trials. In the current study, we evaluated the strategy of using pol II promoters to drive the expression of siRNAs against HIV-1. We replaced the stem sequence in the stem-loop structure of the well-characterized miR-30a with siRNA sequences and showed that designed microRNA (miRNA) could be expressed from pol II promoters. We demonstrated efficient inhibition of HIV-1 replication with such designed miRNA, but the efficacy was directly correlated with the expression level. Both the vector copy number and the promoter strength directly affected the ability of the siRNA to inhibit HIV-1 replication. We also showed that a combination of pol II and pol III promoters to express two different siRNAs increased the efficacy against HIV-1 replication without comprising cell viability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hannon GJ . RNA interference. Nature 2002; 418: 244–251.

    Article  CAS  Google Scholar 

  2. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  Google Scholar 

  3. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  Google Scholar 

  4. Anderson J, Akkina R . CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2005; 2: 53.

    Article  Google Scholar 

  5. Li MJ, Bauer G, Michienzi A, Yee JK, Lee NS, Kim J et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 2003; 8: 196–206.

    Article  CAS  Google Scholar 

  6. Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005; 12: 900–909.

    Article  CAS  Google Scholar 

  7. Hutvagner G, McLachlan J, Psaquinelli AE, Balint E, Tuschl T, Zamore PD . A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293: 834–838.

    Article  CAS  Google Scholar 

  8. Bernstein E, Caudy AA, Hammond SM, Hannon GJ . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.

    Article  CAS  Google Scholar 

  9. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106: 23–34.

    Article  CAS  Google Scholar 

  10. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH . Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15: 2654–2659.

    Article  CAS  Google Scholar 

  11. Knight SW, Bass BL . A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 2001; 293: 2269–2271.

    Article  CAS  Google Scholar 

  12. Qin XF, An DS, Chen IS, Baltimore D . Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 2003; 100: 183–188.

    Article  CAS  Google Scholar 

  13. Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004; 78: 2601–2605.

    Article  CAS  Google Scholar 

  14. Song E, Lee SK, Dykxhoorn DM, Novina C, Zhang D, Crawford K et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol 2003; 77: 7174–7181.

    Article  CAS  Google Scholar 

  15. Boden D, Pusch O, Lee F, Tucker L, Ramratnam B . Human immunodeficiency virus type 1 escape from RNA interference. J Virol 2003; 77: 11531–11535.

    Article  CAS  Google Scholar 

  16. Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002; 8: 681–686.

    Article  CAS  Google Scholar 

  17. Jacque JM, Triques K, Stevenson M . Modulation of HIV-1 replication by RNA interference. Nature 2002; 418: 435–438.

    Article  CAS  Google Scholar 

  18. Tazi J, Forne T, Jeanteur P, Cathala G, Brunel C . Mammalian U6 small nuclear RNA undergoes 3′ end modifications within the spliceosome. Mol Cell Biol 1993; 13: 1641–1650.

    Article  CAS  Google Scholar 

  19. An DS, Qin FX, Auyeung VC, Mao SH, Kung SK, Baltimore D et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 2006; 14: 494–504.

    Article  CAS  Google Scholar 

  20. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441: 537–541.

    Article  CAS  Google Scholar 

  21. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  22. Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR . Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 2005; 11: 220–226.

    Article  CAS  Google Scholar 

  23. Jackson AL, Linsley PS . Noise amidst the silence: off-target effects of siRNAs? Trends Genet 2004; 20: 521–524.

    Article  CAS  Google Scholar 

  24. Zeng Y, Wagner EJ, Cullen BR . Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002; 9: 1327–1333.

    Article  CAS  Google Scholar 

  25. Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ . A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 2005; 102: 13212–13217.

    Article  CAS  Google Scholar 

  26. Yam PY, Li S, Wu J, Hu J, Zaia JA, Yee JK . Design of HIV vectors for efficient gene delivery into human hematopoietic cells. Mol Ther 2002; 5: 479–484.

    Article  CAS  Google Scholar 

  27. Yam P, Jensen M, Akkina R, Anderson J, Villacres MC, Wu J et al. Ex vivo selection and expansion of cells based on expression of a mutated inosine monophosphate dehydrogenase 2 after HIV vector transduction: effects on lymphocytes, monocytes, and CD34+ stem cells. Mol Ther 2006; 14: 236–244.

    Article  CAS  Google Scholar 

  28. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A . Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22: 326–330.

    Article  CAS  Google Scholar 

  29. Kimpton J, Emerman M . Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 1992; 66: 2232–2239.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ter Brake O, Konstantinova P, Ceylan M, Berkhout B . Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 2006; 14: 883–892.

    Article  CAS  Google Scholar 

  31. Baum C, von Kalle C . Gene therapy targeting hematopoietic cells: better not leave it to chance. Acta Haematol 2003; 110: 107–109.

    Article  CAS  Google Scholar 

  32. Baum C, von Kalle C, Staal FJ, Li Z, Fehse B, Schmidt M et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9: 5–13.

    Article  CAS  Google Scholar 

  33. Serfling E, Avots A, Neumann M . The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. Biochim Biophys Acta 1995; 1263: 181–200.

    Article  Google Scholar 

  34. Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N et al. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 1997; 275: 1481–1485.

    Article  CAS  Google Scholar 

  35. Schroder O, Geiduschek EP, Kassavetis GA . A single-stranded promoter for RNA polymerase III. Proc Natl Acad Sci USA 2003; 100: 934–939.

    Article  CAS  Google Scholar 

  36. Graham FL, van der Eb AJ . A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 1973; 52: 456–467.

    Article  CAS  Google Scholar 

  37. Gasmi M, Glynn J, Jin MJ, Jolly DJ, Yee JK, Chen ST . Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J Virol 1999; 73: 1828–1834.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant P01A146030 and a grant from UARP of the University of California. We also thank the flow cytometry core and the sequencing core at COH for their help in analyzing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-K Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, HL., Chang, T., Yam, P. et al. Inhibition of HIV-1 replication with designed miRNAs expressed from RNA polymerase II promoters. Gene Ther 14, 1503–1512 (2007). https://doi.org/10.1038/sj.gt.3303011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303011

Keywords

Search

Quick links