Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Macronutrient energy intake and adiposity in non obese prepubertal children aged 5–11 y (the Fleurbaix Laventie Ville Santé Study)

Abstract

OBJECTIVE: To investigate associations between adiposity indices and food intake in nonobese prepubertal free-living children.

SUBJECTS: Five-hundred and one children, 280 boys and 221 girls aged 5–11 y in two little towns in northern France.

DESIGN: Cross-sectional survey.

MAIN OUTCOME MEASURES: Height and weight, four skinfolds (biceps, triceps, subscapular, suprailiac), waist and hip girths, were measured. Sum of skinfolds (SSF), body mass index (BMI), and relative weight (RW) were calculated. Energy intake (EI), percentage of energy intake ascribed to carbohydrates (%EIC), complex carbohydrates (%EICC), fats (%EIF), saturated fats (%EISF) and proteins (%EIP) were assessed by a single 24 h record. Basal metabolic rate (BMR) was estimated according to Schofield's equations. Obese (RW≥120%), and underreporting children according to Goldberg's and Black's equations were excluded.

RESULTS: In multiple linear regressions analyses performed with hierarchical mixed models, adiposity indices were significantly and inversely associated in girls with %EIC (all P-values<0.02), and positively with %EIF (all P-values <0.05, waist girth and BMI excepted). Similar but non-significant trends were observed in boys. The relationships were not linear, and thresholds close to current dietary recommendations were highlighted. When %EIF was low, a lower percentage of energy intake ascribed to %EISF was associated with thinness. These associations remained after the exclusion of children who had an EI/BMR ≤1.50.

CONCLUSIONS: In nonobese prepubertal children aged 5–11 y, a high %EIC, close to dietary recommendations (≥55%), was associated with thinness. A high %EIF, over the upper dietary recommendation (≤ 35%), was associated with a greater adiposity thickness. There was no further increase in adiposity beyond this threshold. Reasons for the absence of a linear relationship pattern between adiposity and macronutrient intake remain to be determined.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Troiano RP, Flegal KM, Kuczmarski RJ, Campbell SM, Johnson CL . Overweight prevalence and trends for children and adolescents Arch Pediatr Adolesc Med 1995 149: 1085–1091.

    Article  CAS  PubMed  Google Scholar 

  2. Chinn S, Rona RJ . Trends in weight-for-height and triceps skinfold thickness for English and Scottish children, 1972–1982 and 1982–1990 Paediatr Perinat Epidemiol 1994 8: 90–106.

    Article  CAS  PubMed  Google Scholar 

  3. Smoak CG, Burke GL, Webber LS, Harsha DW, Srinivasan SR, Berenson GS . Relation of obesity to clustering of cardiovascular disease risk factors in children and young adults; the Bogalusa Heart Study Am J Epidemiol 1987 125: 364–372.

    Article  CAS  PubMed  Google Scholar 

  4. Power C, Lake JK, Cole TJ . Body mass index and height from childhood to adulthood in the 1958 British birth cohort Am J Clin Nutr 1997 66: 1094–1101.

    Article  CAS  PubMed  Google Scholar 

  5. Myers L, Coughlin SS, Webber LS, Srinivasan SR, Berenson GS . Prediction of adult cardiovascular multifactorial risk status from childhood risk factors levels Am J Epidemiol 1995 142: 918–924.

    Article  CAS  PubMed  Google Scholar 

  6. Nieto FJ, Szklo M, Comstock GW . Childhood weight and growth rate as predictors of adult mortality Am J Epidemiol 1992 136: 201–213.

    Article  CAS  PubMed  Google Scholar 

  7. Dietz WH . Prevention of childhood obesity Pediatr Clin North Am 1986 33: 823–833.

    Article  PubMed  Google Scholar 

  8. Gazzaniga JM, Burns TL . Relationship between diet composition and body fatness, with adjustment for resting energy expenditure and physical activity, in preadolescent children Am J Clin Nutr 1993 58: 21–28.

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen VT, Larson DE, Johnson RK, Goran MI . Fat intake and adiposity in children of lean and obese parents Am J Clin Nutr 1996 63: 507–513.

    Article  CAS  PubMed  Google Scholar 

  10. Obarzanek E, Schreiber GB, Crawford PB, Goldman SR, Barrier PM, Frederick MM, Lakatos E . Energy intake and physical activity in relation to indexes of body fat: the National Heart, Lung, and Blood Institute Growth and Health Study Am J Clin Nutr 1994 60: 15–22.

    Article  CAS  PubMed  Google Scholar 

  11. Tucker LA, Seljaas GT, Hager RL . Body fat percentage of children varies according to their diet composition J Am Diet Assoc 1997 97: 981–986.

    Article  CAS  PubMed  Google Scholar 

  12. Maffeis C, Pinelli L, Schutz Y . Fat intake and adiposity in 8 to 11-year-old obese children Int J Obes Relat Metab Disord 1996 20: 170–174.

    CAS  PubMed  Google Scholar 

  13. Harper AE . Dietary guidelines in perspective J Nutr 1996 126: 1042S–1048S.

    Article  CAS  PubMed  Google Scholar 

  14. Olson RE . The dietary recommendations of the American Academy of Pediatrics Am J Clin Nutr 1995 61: 271–273.

    Article  CAS  PubMed  Google Scholar 

  15. Feinberg M, Favier JC, Ireland Ripert J . In Lavoisier, (ed) Repertoire General des Aliments Technique et Documentation: Paris 1991.

    Google Scholar 

  16. Paul AA, Southgate DAT . McCance & Widdowson's The Composition of Foods Elsevier: London 1978.

  17. Champagne CM, Baker NB, DeLany JP, Harsha DW, Bray GA . Assessment of energy intake underreporting by doubly labeled water and observations on reported nutrient intakes in children J Am Diet Assoc 1998 98: 426–433.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson RK, Driscoll P, Goran MI . Comparison of multiple-pass 24-hour record estimates of energy intake with total energy expenditure determined by the doubly labeled water method in young children J Am Diet Assoc 1996 96: 1140–1144.

    Article  CAS  PubMed  Google Scholar 

  19. Willett WC, Howe GR, Kushi LH . Adjustment for total energy intake in epidemiologic study Am J Clin Nutr 1997 65 (Suppl): 1220S–1128S.

    Article  CAS  PubMed  Google Scholar 

  20. Schofield WN, Schofield C, James WPT . Basal metabolic rate Hum Nutr Clin Nutr 1985 39C (Suppl 1): 1–96.

    Google Scholar 

  21. Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd Pr, Coward WA, Prentice AM . Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording Eur J Clin Nutr 1991 45: 569–581.

    CAS  PubMed  Google Scholar 

  22. Black AE, Goldberg GR, Jebb SA, Livingstone MBE, Cole TJ, Prentice AM . Critical evaluation of energy intake data using fundamental principles of energy physiology: 2. Evaluating the results of published surveys Eur J Clin Nutr 1991 45: 583–599.

    CAS  PubMed  Google Scholar 

  23. Black AE, Coward WA, Cole TJ, Prentice AM . Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements Eur J Clin Nutr 1996 50: 72–92.

    CAS  PubMed  Google Scholar 

  24. Black AE . Physical activity levels from a meta-analysis of doubly labeled water studies for validating energy intake as measured by dietary assessment Nutr Rev 1996 54: 170–174.

    Article  CAS  PubMed  Google Scholar 

  25. Jellife DB . The assessment of the nutritional status of the community, WHO Monograph Series 53 Switzerland, World Health Organisation: Geneva 1966.

  26. Cummings JH, Englyst HN . Gastrointestinal effects of food carbohydrate Am J Clin Nutr 1995 61 (Suppl): 938S–9345S.

    Article  CAS  PubMed  Google Scholar 

  27. Gerver WJM, de Bruin R . Body composition in children based on anthropometric data; a presentation of normal values Eur J Pediatr 1996 155: 870–876.

    Article  CAS  PubMed  Google Scholar 

  28. Guillaume M, Lapidus L, Beckers F, Lambert A, Björntorp P . Cardiovascular risk factors in children from the Belgian province of Luxembourg Am J Epidemiol 1996 144: 867–880.

    Article  CAS  PubMed  Google Scholar 

  29. Lissner L, Heitmann BL, Lindroos AK . Measuring intake in free-living human subjects: a question of bias Proc Nutr Soc 1998 57: 333–339.

    Article  CAS  PubMed  Google Scholar 

  30. Livingstone MBE, Prentice AM, Coward W . Strain JJ, Black AE, Davies PSW, Stewart CM, McKenna PG, Whitehead RG. Validation of estimates of energy intake by weighed dietary record and diet history in children and adolescents Am J Clin Nutr 1992 56: 29–35.

    Article  CAS  PubMed  Google Scholar 

  31. Nicklas TA . Dietary studies of children and young adults (1973–1988): the Bogalusa Heart Study Am J Med Sci 1995 310 (Suppl 1): S101–S108.

    Article  PubMed  Google Scholar 

  32. Haraldsdottir J, Hermansen B . Repeated 24-h records with young schoolchildren. A feasible alternative to dietary history from parents? Eur J Clin Nutr 1995 49: 729–739.

    CAS  PubMed  Google Scholar 

  33. Räsänen L . Nutrition survey of Finnish rural children; VI. Methodological study comparing the 24-hour record and the dietary history interview Am J Clin Nutr 1979 32: 2560–2567.

    Article  PubMed  Google Scholar 

  34. Huss-Ashmore R . Issues in the measurement of energy intake for free-living human populations Am J Hum Biol 1996 8: 159–167.

    Article  PubMed  Google Scholar 

  35. Persson LA, Carlgren G . Measuring children's diets: evaluation of dietary assessment techniques in infancy and childhood Int J Epidemiol 1984 13 (4): 506–517.

    Article  CAS  PubMed  Google Scholar 

  36. Lytle LA, Nichaman MZ, Obarzanek E, Glovsky E, Montgomery D, Nicklas T, Zive M, Feldman H . Validation of 24-hour records assisted by food records in third-grade children J Am Diet Assoc 1993 93: 1431–1436.

    Article  CAS  PubMed  Google Scholar 

  37. Hellerstein MK, Christiansen M, Kaempfer S, Kletke C, Wu K, Reid JS, Mulligan K, Hellerstein NS, Shackleton CHL . Measurement of de novo hepatic lipogenesis in humans using stable isotopes J Clin Invest 1991 87: 1841–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schutz Y, Acheson KJ, Jequier E . Twenty-four-hour energy expenditure and thermogenesis: response to progressive carbohydrate overfeeding in man Int J Obes 1985 9 (Suppl 2): 111–114.

    PubMed  Google Scholar 

  39. Raben A, Due Jensen N, Marckmann P, Sandström B, Astrup A . Spontaneous weight loss during 11 weeks ad libitum intake of a low fat/high fiber diet in young, normal weight subjects Int J Obes Relat Metab Disord 1995 19: 916–923.

    CAS  PubMed  Google Scholar 

  40. Boot AM, Bouquet J, de Ridder MAJ, Krenning EP, de Muinck Keizer-Schrama SMPF . Determinants of body composition measured by dual-energy X-ray absorptiometry in Dutch children and adolescents Am J Clin Nutr 1997 66: 232–238.

    Article  CAS  PubMed  Google Scholar 

  41. Schaefer EJ, Augustin JL, Schaefer MM, Rasmussen H, Ordovas JM, Dallal GE, Dwyer JT . Lack of efficacy of a food-frequency questionnaire in assessing dietary macronutrient intakes in subjects consuming diets of known composition Am J Clin Nutr 2000 71: 746–751.

    Article  CAS  PubMed  Google Scholar 

  42. Beaton GH, Milner J, McGuire V, Feather TE, Little JA . Source of variation in 24-hour dietary recall data: implications for nutrition study design and interpretation. Carbohydrate sources, vitamins, and minerals Am J Clin Nutr 1983 37: 986–995.

    Article  CAS  PubMed  Google Scholar 

  43. Smith CJ, Nelson RG, Hardy SA, Manahan EM, Bennett PH, Knowler WC . Survey of diet of Pima Indians using quantitative food frequency assessment and 24-hour recall J Am Diet Assoc 1996 96: 778–784.

    Article  CAS  PubMed  Google Scholar 

  44. Frank GC, Hollatz AT, Webber LS, Berenson GS . Effect of an interviewer recording practices on nutrient intake–Bogalusa Heart Study J Am Diet Assoc 1984 84: 1432–1439.

    CAS  PubMed  Google Scholar 

  45. Schrauwen PS, van Marken Lichtenbelt WD, Saris WH, Westerterp KR . Changes in fat oxidation in response to a high-fat diet Am J Clin Nutr 1997 66: 276–282.

    Article  CAS  PubMed  Google Scholar 

  46. Astrup A, Buemann B, Western P, Toubro Soren, Raben A, Christensen NJ . Obesity as an adaptation to a high-fat diet: evidence from a cross-sectional study Am J Clin Nutr 1994 59: 350–355.

    Article  CAS  PubMed  Google Scholar 

  47. Molnar D, Schutz Y . Fat oxidation in nonobese and obese adolescents: effect of body composition and pubertal development J Pediatr 1998 132: 98–104.

    Article  CAS  PubMed  Google Scholar 

  48. Sessler AM, Ntambi JM . Polyunsaturated fatty acid regulation of gene expression J Nutr 1998 128: 923–926.

    Article  CAS  PubMed  Google Scholar 

  49. Saris WHM, Astrup A, Prentice AM, Zunft FJF, Formiguera X . The dietary carbohydrate/fat ratio debate; results from an European multicentre intervention trial: CARMEN Oral communication in the 8th International Congress on Obesity, Paris 29 August–3 September; 1998.

  50. Luepker RV, Perry CL, McKinlay SM, Nader PR, Parcel GS, Stone EJ, Webber LS, Elder JP, Feldman HA, Johnson CC, Kelder SH, Wu M, for the Catch Collaborative Group . Outcomes of a field trial to improve children's dietary patterns and physical activity. The Child and Adolescent Trial for Cardiovascular Health (CATCH) JAMA 1996 275: 768–776.

    Article  CAS  PubMed  Google Scholar 

  51. Obarzanek E, Hunsberger SA, Van Horn L, Hartmuller VV, Barton BA, Stevens VJ, Kxiterovich PO, Franklin FA, Kimm SYS, Lasser NL, Simons-Morton DG, Lauer RM . Safety of a fat-reduced diet: the Dietary Intervention Study in Children (DISC) Pediatrics 1997 100: 51–59.

    Article  CAS  PubMed  Google Scholar 

  52. Kasim-Karadas SE . Dietary fat controversy: is it also applicable to children? Am J Clin Nutr 1998 67: 1106–1107.

    Article  Google Scholar 

  53. Bandini LG, Cyr H, Must A, Dietz WH . Validity of reported energy intake in preadolescent girls Am J Clin Nutr 1997 65 (Suppl 4): 1138S–1141S.

    Article  CAS  PubMed  Google Scholar 

  54. Hill AJ, Silver EK . Fat, friendless and unhealthy: 9-year old children's perception of body shape stereotypes Int J Obes Relat Metab Disord 1995 19: 423–430.

    CAS  PubMed  Google Scholar 

  55. Kimm SYS, Barton BA, Berhane K, Ross JW, Payne GH, Schreiber GB . Self-esteem and adiposity in black and white girls: the NHLBI Growth and Health study Ann Epidemiol 1997 7: 550–560.

    Article  CAS  PubMed  Google Scholar 

  56. Singer MR, Moore LL, Garrahie EJ, Curtis Ellison R . The tracking of nutrient intake in young children: the Framingham Children's Study Am J Public Health 1995 85: 1673–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by contract no. 97062 between INSERM and Roche France Laboratories. We gratefully acknowledge the contribution of F Thomas, PhD, for her participation in the organization and data analysis of the study. We thank Dr C Toursel and Dr S Rohart, the school doctors who collected anthropometric data in children, and the general practitioners and the mayors of Fleurbaix and Laventie for their support of the study.

The Fleurbaix Laventie Ville Santé Study was supported by grants from Eridania Béghin-Say, Groupe Fournier, Lesieur, Nestlé France and Roche Diagnostics companies, and from the ‘Conseil Régional Nord-Pas-de-Calais’. MA Charles was the recipient of a grant from the ALFEDIAM (Association de Langue Française pour l'Etude du Diabète et du Métabolisme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MA Charles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maillard, G., Charles, M., Lafay, L. et al. Macronutrient energy intake and adiposity in non obese prepubertal children aged 5–11 y (the Fleurbaix Laventie Ville Santé Study). Int J Obes 24, 1608–1617 (2000). https://doi.org/10.1038/sj.ijo.0801446

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801446

Keywords

This article is cited by

Search

Quick links