Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

The postprandial response of adiponectin to a high-fat meal in normal and insulin-resistant subjects

Abstract

OBJECTIVE: Adiponectin is an adipose-specific protein with short-term effects in vivo on glucose and fatty acid levels. We studied the plasma concentration and the proteolytic activation status of adiponectin following the consumption of a high-fat, low-carbohydrate meal.

DESIGN: Analysis of adiponectin concentration and polypeptide structure after consumption of a fat meal.

SUBJECTS: Normal subjects (n=24) and first-degree relatives of patients with type II diabetes (n=20).

MEASUREMENTS: All subjects had a normal fasting plasma glucose and glucose tolerance. Blood was collected for the determination of plasma insulin, adiponectin, triglyceride, and free fatty acids. Body composition was assessed with dual-energy X-ray absorptiometry and whole-body insulin sensitivity with a euglycaemic, hyperinsulinaemic clamp. Postprandial response over 6 h was determined for plasma adiponectin, glucose, insulin, triglyceride, and free fatty acids. Adiponectin was measured by commercial RIA and its polypeptide structure examined by Western blotting.

RESULTS: The relatives were more insulin resistant and had increased adiposity compared with control subjects. There was no significant difference in postprandial response in fatty acids, triglyceride, or insulin between the groups. Postprandial levels of adiponectin measured by radioimmunoassay were not significantly different from fasting levels, and no breakdown products of adiponectin were detectable in postprandial samples by Western blotting.

CONCLUSIONS: Levels of circulating adiponectin do not alter in response to a fat meal, despite evidence in mice that acute changes in adiponectin significantly affect postprandial fatty acid flux. Moreover, a fat meal challenge did not lead to significant activation of adiponectin by proteolytic conversion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Wiecek A, Kokot F, Chudek J, Adamczak M . The adipose tissue—a novel endocrine organ of interest to the nephrologist. Nephrol Dial Transplant 2002; 17: 191–195.

    Article  PubMed  Google Scholar 

  2. Berg AH, Combs TP, Scherer PE . ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 2002; 13: 84–89.

    Article  CAS  PubMed  Google Scholar 

  3. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y . Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.

    Article  CAS  PubMed  Google Scholar 

  4. Zoccali C, Mallamaci F, Tripepi G, Benedetto FA, Cutrupi S, Parlongo S, Malatino LS, Bonanno G, Seminara G, Rapisarda F, Fatuzzo P, Buemi M, Nicocia G, Tanaka S, Ouchi N, Kihara S, Funahashi T, Matsuzawa Y . Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol 2002; 13: 134–141.

    Article  CAS  PubMed  Google Scholar 

  5. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y . Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000; 102: 1296–1301.

    Article  CAS  PubMed  Google Scholar 

  6. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA . Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–1935.

    Article  CAS  PubMed  Google Scholar 

  7. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE . The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7: 947–953.

    Article  CAS  PubMed  Google Scholar 

  8. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y . PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50: 2094–2099.

    Article  CAS  PubMed  Google Scholar 

  9. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF . Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001; 98: 2005–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McGarry JD . Glucose-fatty acid interactions in health and disease. Am J Clin Nutr 1998; 67: 500S–504S.

    Article  CAS  PubMed  Google Scholar 

  11. Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ . Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes 1996; 45: 633–638.

    Article  CAS  PubMed  Google Scholar 

  12. DeFronzo RA, Tobin JD, Andres R . Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214–E223.

    CAS  PubMed  Google Scholar 

  13. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y . Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001; 50: 1126–1133.

    Article  CAS  PubMed  Google Scholar 

  14. Zilversmit DB . Atherogenesis: a postprandial phenomenon. Circulation 1979; 60: 473–485.

    Article  CAS  PubMed  Google Scholar 

  15. Axelsen M, Smith U, Eriksson JW, Taskinen MR, Jansson PA . Postprandial hypertriglyceridemia and insulin resistance in normoglycemic first-degree relatives of patients with type 2 diabetes. Ann Intern Med 1999; 131: 27–31.

    Article  CAS  PubMed  Google Scholar 

  16. Tsao TS, Murrey HE, Hug C, Lee DH, Lodish HF . Oligomerization state-dependent activation of NF-kB signaling pathway by Acrp30. J Biol Chem 2002; 277: 29359–29362.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P W Peake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peake, P., Kriketos, A., Denyer, G. et al. The postprandial response of adiponectin to a high-fat meal in normal and insulin-resistant subjects. Int J Obes 27, 657–662 (2003). https://doi.org/10.1038/sj.ijo.0802289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802289

Keywords

This article is cited by

Search

Quick links