Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Melanocortin-4 receptor gene and physical activity in the Québec Family Study

Abstract

Physical inactivity is a risk factor for numerous chronic diseases. Low compliance with interventions to increase activity suggests involvement of biological systems.

OBJECTIVE: To examine whether sequence variants in genes encoding neuropeptides and receptors in the arcuate and paraventricular nucleus of the hypothalamus contribute to variations in physical activity level in the Québec Family Study.

METHODS: We genotyped polymorphisms in the melanocortin-4 receptor (MC4R), melanocortin-3 receptor (MC3R), neuropeptide-Y (NPY), neuropeptide-Y Y1 receptor (NPY Y1R), cocaine- and amphetamine-regulated transcript (CART), agouti-related protein (AGRP), and pro-opiomelanocortin (POMC) genes in 669 subjects (age (X±s.d.): parents: 52±3.4 y; offspring: 28±8.7 y). Total physical activity, moderate-to-strenuous activity, and inactivity phenotypes were estimated from a three-day record. The past year's physical activity level was assessed from a questionnaire. Associations between the physical activity phenotypes and the polymorphisms were analyzed using the MIXED model (SAS).

RESULTS: The MC4R-C-2745T variant showed significant associations with physical activity phenotypes. The lowest moderate-to-strenuous activity scores (P=0.005) and the highest inactivity scores (P=0.01) emerged in the T/T genotype. Exclusion of obese subjects increased the association. For inactivity, the association of the MC4R-C-2745T variant was strongest in the offspring (P=0.002). The T/T offspring had both the highest inactivity score and the lowest body mass index. The CART-A1475G variant modified the associations with MC4R-C-2745T; T/T homozygotes had the lowest activity scores when they also had the A/A CART-A1475G genotype. No significant associations were observed with polymorphisms in the other neuropeptides.

CONCLUSION: These findings suggest that DNA sequence variation at the MC4R gene locus may contribute to the propensity to be sedentary.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Booth FW, Chakravarthy MV, Gordon SE, Spangenburg EE . Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol 2002; 93: 3–30.

    Article  Google Scholar 

  2. Center for Disease Control and Prevention. Surgeon General's report on physical activity and health. JAMA 1996; 276: 522.

  3. van der Bij AK, Laurant MG, Wensing M . Effectiveness of physical activity interventions for older adults: a review. Am J Prev Med 2002; 22: 120–133.

    Article  Google Scholar 

  4. Beunen G, Thomis M, Loos R, Maes H, Derom C, Vlietinck R . Genetic determinants of sport activities. Pediatr Exerc Sci 1999; 11: 278.

    Google Scholar 

  5. Perusse L, Tremblay A, Leblanc C, Bouchard C . Genetic and environmental influences on level of habitual physical activity and exercise participation. Am J Epidemiol 1989; 129: 1012–1022.

    Article  CAS  Google Scholar 

  6. Simonen RL, Perusse L, Rankinen T, Rice T, Rao DC, Bouchard C . Familial aggregation of physical activity levels in the Quebec Family Study. Med Sci Sports Exerc 2002; 34: 1137–1142.

    Article  Google Scholar 

  7. Leibel RL, Rosenbaum M, Hirsch J . Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995; 332: 621–628.

    Article  CAS  Google Scholar 

  8. Levine JA, Eberhardt NL, Jensen MD . Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 1999; 283: 212–214.

    Article  CAS  Google Scholar 

  9. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G, Dussault J, Moorjani S, Pinault S, Fournier G . The response to long-term overfeeding in identical twins. N Engl J Med 1990; 322: 1477–1482.

    Article  CAS  Google Scholar 

  10. Tremblay A, Despres JP, Thériault G, Fournier G, Bouchard C . Overfeeding and energy expenditure in humans. Am J Clin Nutr 1992; 56: 857–862.

    Article  CAS  Google Scholar 

  11. Klingberg F, Klengel S . Lesions in four parts of the basal forebrain change basic behaviour in rats. Neuroreport 1993; 4: 639–642.

    Article  CAS  Google Scholar 

  12. Tokunaga K, Matsuzawa Y, Fujioka S, Kobatake T, Keno Y, Odaka H, Matsuo T, Tarui S . PVN-lesioned obese rats maintain ambulatory activity and its circadian rhythm. Brain Res Bull 1991; 26: 393–396.

    Article  CAS  Google Scholar 

  13. Zhuo QY, Palmiter RD . Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 1995; 83: 1197–1209.

    Article  Google Scholar 

  14. Ste Marie L, Miura GI, Marsh DJ, Yagaloff K, Palmiter RD . A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci USA 2000; 97: 12339–12344.

    Article  CAS  Google Scholar 

  15. Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD . Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci 2001; 4: 605–611.

    Article  CAS  Google Scholar 

  16. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD . A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141: 3518–3521.

    Article  CAS  Google Scholar 

  17. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan X-M, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LHT . Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000; 26: 97–102.

    Article  CAS  Google Scholar 

  18. Kimmel HL, Thim L, Kuhar MJ . Activity of various CART peptides in changing locomotor activity in the rat. Neuropeptides 2002; 36: 9–12.

    Article  CAS  Google Scholar 

  19. Bouchard C . Genetic epidemiology, association, and sib-pair linkage: results from the Québec Family Study. In: Bray GA, Ryan DH (eds). Molecular and genetic aspects of obesity. Louisiana State University: Baton Rouge, LA; 1996. pp 470–481.

    Google Scholar 

  20. Bouchard C, Tremblay A, Leblanc C, Lortie G, Savard R, Thériault G . A method to assess energy expenditure in children and adults. Am J Clin Nutr 1983; 37: 461–467.

    Article  CAS  Google Scholar 

  21. Chagnon YC, Chen WJ, Perusse L, Chagnon M, Nadeau A, Wilkison WO, Bouchard C . Linkage and association studies between the melanocortin receptors 4 and 5 genes and obesity-related phenotypes in the Quebec Family Study. Mol Med 1997; 3: 663–673.

    Article  CAS  Google Scholar 

  22. Gotoda T, Scott J, Aitman TJ . Molecular screening of the human melanocortin-4 receptor gene: identification of a missense variant showing no association with obesity, plasma glucose, or insulin. Diabetologia 1997; 40: 976–979.

    Article  CAS  Google Scholar 

  23. Boucher N, Lanouette CM, Larose M, Perusse L, Bouchard C, Chagnon YC . A +2138InsCAGACC polymorphism of the melanocortin receptor 3 gene is associated in human with fat level and partitioning in interaction with body corpulence. Mol Med 2002; 8: 158–165.

    Article  CAS  Google Scholar 

  24. Grabe N . AliBaba2: context specific identification of transcription factor binding sites. In Silico Biol 2002; 2: S1–S15.

    PubMed  Google Scholar 

  25. Petsko G . Modeling structure from sequence. In: Baxevanis AD (ed). Current protocols in bioinformatics. Wiley: Indianapolis, IN; 2002.

    Google Scholar 

  26. Chagnon YC, Borecki IB, Perusse L, Roy S, Lacaille M, Chagnon M, Ho-Kim MA, Rice T, Province MA, Rao DC, Bouchard C . Genome-wide search for genes to the fat-free body mass in the Quebec Family Study. Metabolism 2000; 49: 203–207.

    Article  CAS  Google Scholar 

  27. Cummings DE, Schwartz MW . Melanocortins and body weight: a tale of two receptors. Nat Genet 2000; 26: 8–9.

    Article  CAS  Google Scholar 

  28. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F . Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131–141.

    Article  CAS  Google Scholar 

  29. Yeo GSH, Farooqi IS, Aminian S, Halsall D, Stanhope RG, O’Rahilly S . A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 1998; 20: 111–112.

    Article  CAS  Google Scholar 

  30. Vaisse C, Clement K, Guy-Grand B, Froguel P . A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20: 113–114.

    Article  CAS  Google Scholar 

  31. Sina M, Hinney A, Ziegler A, Neupert T, Mayer H, Siegfried W, Blum WF, Remschmidt H, Hebebrand J . Phenotypes in three pedigrees with autosomal dominant obesity caused by haploinsufficiency mutations in the melanocortin-4 receptor gene. Am J Hum Genet 1999; 65: 1501–1507.

    Article  CAS  Google Scholar 

  32. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P . Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 2000; 106: 253–262.

    Article  CAS  Google Scholar 

  33. Gu W, Tu Z, Kleyn PW, Kissebah A, Duprat L, Lee J, Chin W, Maruti S, Deng N, Fisher SL, Franco LS, Burn P, Yagaloff KA, Nathan J, Heymsfield S, Albu J, Pi-Sunyer FX, Allison DB . Identification and functional analysis of novel human melanocortin-4 receptor variants. Diabetes 1999; 48: 635–639.

    Article  CAS  Google Scholar 

  34. Farooqi IS, Yeo GSH, Keogh JM, Aminian S, Jebb SA, Butler G, Cheetham T, O’Rahilly S . Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 2000; 106: 271–279.

    Article  CAS  Google Scholar 

  35. Mergen M, Mergen H, Ozata M, Oner R, Oner C . Rapid communication: a novel melanocortin 4 receptor (MC4R) gene mutation associated with morbid obesity. J Clin Endocrinol Metab 2001; 86: 3448.

    Article  CAS  Google Scholar 

  36. Hinney A, Schmidt A, Nottebom K, Heibult O, Becker I, Ziegler A, Gerber G, Sina M, Gorg T, Mayer H, Siegfried W, Fichter M, Remschmidt H, Hebebrand J . Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab 1999; 84: 1483–1486.

    Article  CAS  Google Scholar 

  37. Dubern B, Clement K, Pelloux V, Froguel P, Girardet JP, Guy-Grand B, Tounian P . Mutational analysis of melanocortin-4 receptor, agouti-related protein, and alpha-melanocyte-stimulating hormone genes in severely obese children. J Pediatr 2001; 139: 204–209.

    Article  CAS  Google Scholar 

  38. Kobayashi H, Ogawa Y, Shintani M, Ebihara K, Shimodahira M, Iwakura T, Hino M, Ishihara T, Ikekubo K, Kurahachi H, Nakao K . A novel homozygous missense mutation of melanocortin-4 receptor (MC4R) in a Japanese woman with severe obesity. Diabetes 2002; 51: 243–246.

    Article  CAS  Google Scholar 

  39. Jacobson P, Ukkola O, Rankinen T, Snyder EE, Leon AS, Rao DC, Skinner JS, Wilmore JH, Lonn L, Cowan Jr GS, Sjostrom L, Bouchard C . Melanocortin 4 receptor sequence variations are seldom a cause of human obesity: the Swedish obese subjects, the HERITAGE Family Study, and a Memphis cohort. J Clin Endocrinol Metab 2002; 87: 4442–4446.

    Article  CAS  Google Scholar 

  40. Miraglia del Giudice E, Cirillo G, Nigro V, Santoro N, D’Urso L, Raimondo P, Cozzolino D, Scafato D, Perrone L . Low frequency of melanocortin-4 receptor (MC4R) mutations in a Mediterranean population with early-onset obesity. Int J Obes Relat Metab Disord 2002; 26: 647–651.

    Article  CAS  Google Scholar 

  41. Marti A, Corbalan MS, Forga L, Martinez JA, Hinney A, Hebebrand J . A novel nonsense mutation in the melanocortin-4 receptor associated with obesity in a Spanish population. Int J Obes Relat Metab Disord 2003; 27: 385–388.

    Article  CAS  Google Scholar 

  42. Farooqi IS, Keogh JM, Yeo GSH, Lank EJ, Cheetham T, O’Rahilly S . Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348: 1085–1095.

    Article  CAS  Google Scholar 

  43. Branson R, Potoczna N, Kral JG, Lentes KU, Hoehe MR, Horber FF . Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. N Engl J Med 2003; 348: 1096–1103.

    Article  CAS  Google Scholar 

  44. Ho G, MacKenzie RG . Functional characterization of mutations in melanocortin-4 receptor associated with human obesity. J Biol Chem 1999; 274: 35816–35822.

    Article  CAS  Google Scholar 

  45. Yeo GSH, Lank EJ, Farooqi IF, Keogh JM, Challis BG, O’Rahilly S . Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet 2003; 12: 561–574.

    Article  CAS  Google Scholar 

  46. Adage T, Scheurink AJW, de Boer SF, de Vries K, Konsman JP, Kuipers F, Adan RAH, Baskin DG, Schwartz MW, van Dijk G . Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats. J Neurosci 2001; 21: 3639–3645.

    Article  CAS  Google Scholar 

  47. Salbe AD, Weyer C, Harper I, Lindsay RS, Ravussin E, Tataranni PA . Assessing risk factors for obesity between childhood and adolescence: ii. Energy metabolism and physical activity. Pediatrics 2002; 110: 307–314.

    Article  Google Scholar 

  48. Gortmaker SL, Dietz WH, Cheung LW . Inactivity, diet, and the fattening of America. J Am Diet Assoc 1990; 90: 1247–1252.

    CAS  PubMed  Google Scholar 

  49. Rohner-Jeanrenaud F, Craft LS, Bridwell J, Sutter TM, Tinsley FC, Smiley DL, Burkhart DR, Statnick MA, Heiman ML, Ravussin E, Caro JF . Chronic central infusion of cocaine- and amphetamine-regulated transcript (CART 55–102): effects on body weight homeostasis in lean and high-fat-fed obese rats. Int J Obes Relat Metab Disord 2002; 26: 143–149.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The QFS is supported by multiple grants from the Medical Research Council of Canada (PG-11811, MT-13960, and GR-15187). R Loos is supported by a postdoctoral fellowship from the American Heart Association, Southeast affiliate (no. 0325355B). C Bouchard is partially supported by the George A Bray Chair in Nutrition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Bouchard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loos, R., Rankinen, T., Tremblay, A. et al. Melanocortin-4 receptor gene and physical activity in the Québec Family Study. Int J Obes 29, 420–428 (2005). https://doi.org/10.1038/sj.ijo.0802869

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802869

Keywords

This article is cited by

Search

Quick links