Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α

Abstract

Metabolic pathways are controlled at different levels in response to environmental or hormonal stimuli. This control is achieved, at least in part, at the transcriptional level of gene expression. The regulation of gene expression is executed by specific transcription factors, but there is another level of regulation by a set of proteins that modulate these factors called transcriptional coactivators. In mammals, one of the most characterized examples of regulation of metabolic pathways by transcriptional coactivators is peroxisome proliferator-activated receptors gamma (PPARγ) coactivator-1 alpha (PGC-1α). PGC-1α is activated by signals that control energy and nutrient homeostasis. Notably, PGC-1α induces and coordinates gene expression that stimulates mitochondrial biogenesis and a thermogenic program in brown fat, fiber-type switching in skeletal muscle, and metabolic pathways linked to the fasted response in the liver. PGC-1α activates gene expression through specific interaction with transcription factors that bind to the promoters of metabolic genes. These transcription factors can be ubiquitous such as the nuclear respiratory factors or tissue-enriched factors such as PPARγ (brown fat), hepatocyte nuclear factor (HNF4α) (liver and pancreas) and muscle enhancer factor (MEF2s). The fact that PGC-1α controls important metabolic pathways in several tissues suggests that it can be a therapeutic target for antiobesity or diabetes drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Malik S, Roeder RG . Transcriptional regulation through mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 2000; 25: 277–283.

    Article  CAS  Google Scholar 

  2. Puigserver P, Spiegelman BM . Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 2003; 24: 78–90.

    Article  CAS  Google Scholar 

  3. Knutti D, Kralli A . PGC-1, a versatile coactivator. Trends Endocrinol Metab 2001; 12: 360–365.

    Article  CAS  Google Scholar 

  4. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM . Activation of PPARgamma coactivator-1 through transcription factor docking. Science 1999; 286: 1368–1371.

    Article  CAS  Google Scholar 

  5. Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG . Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell 2003; 12: 1137–1149.

    Article  CAS  Google Scholar 

  6. Cannon B, Nedergaard J . Respiratory and thermogenic capacities of cells and mitochondria from brown and white adipose tissue. Methods Mol Biol 2001; 155: 295–303.

    CAS  PubMed  Google Scholar 

  7. Sears IB, MacGinnitie MA, Kovacs LG, Graves RA . Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol 1996; 16: 3410–3419.

    Article  CAS  Google Scholar 

  8. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM . A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829–839.

    Article  CAS  Google Scholar 

  9. Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, Langin D . Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003; 278: 33370–33376.

    Article  CAS  Google Scholar 

  10. Vega RB, Huss JM, Kelly DP . The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20: 1868–1876.

    Article  CAS  Google Scholar 

  11. Cao W, Medvedev AV, Daniel KW, Collins S . beta-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem 2001; 276: 27077–27082.

    Article  CAS  Google Scholar 

  12. Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM . Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 2001; 8: 971–982.

    Article  CAS  Google Scholar 

  13. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM . Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98: 115–124.

    Article  CAS  Google Scholar 

  14. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM . Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002; 418: 797–801.

    Article  CAS  Google Scholar 

  15. Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS . Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002; 12: 349–352.

    Article  Google Scholar 

  16. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM . An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA 2003; 100: 7111–7116.

    Article  CAS  Google Scholar 

  17. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC . PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  Google Scholar 

  18. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM . Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001; 413: 131–138.

    Article  CAS  Google Scholar 

  19. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M . CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001; 413: 179–183.

    Article  CAS  Google Scholar 

  20. Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM . Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 2003; 100: 4012–4017.

    Article  CAS  Google Scholar 

  21. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM . Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003; 423: 550–555.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr Bruce Spiegelman and his laboratory for his support and helpful discussions over the last years. I also thank Francisca Vazquez and members of the Puigserver's laboratory, Joseph Rodgers and Tom Cunningham for careful reading of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Puigserver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puigserver, P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α. Int J Obes 29 (Suppl 1), S5–S9 (2005). https://doi.org/10.1038/sj.ijo.0802905

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802905

Keywords

This article is cited by

Search

Quick links