Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Liver mitochondrial properties from the obesity-resistant Lou/C rat

Abstract

Objective:

The first objective was to evaluate the influence of caloric intake on liver mitochondrial properties. The second objective was aimed at determining the impact of increasing fat intake on these properties.

Design:

Lou/C rats, displaying an inborn low caloric intake and resistant to diet-induced obesity, were compared to Wistar rats fed either ad libitum or pair-fed. An additional group of Lou/C rats were allowed to increase their fat intake by adjusting their diet from a standard high carbohydrate low-fat diet to a high-fat carbohydrate-free diet.

Measurements:

Hydrogen peroxide (H2O2) generation, oxygen consumption rate ( J O 2 ) , membrane potential (ΔΨ), activity of respiratory chain complexes, cytochrome contents, oxidative phosphorylation efficiency (OPE) and uncoupling protein 2 (UCP2) expression were determined in liver mitochondria.

Results:

H2O2 production was higher in Lou/C than Wistar rats with glutamate/malate and/or succinate, octanoyl-carnitine, as substrates. These mitochondrial features cannot be mimicked by pair-feeding Wistar rats and remained unaltered by increasing fat intake. Enhanced H2O2 production by mitochondria from Lou/C rats is due to an increased reverse electron flow through the respiratory-chain complex I and a higher medium-chain acyl-CoA dehydrogenase activity. While J O 2 was similar over a large range of ΔΨ in both strains, Lou/C rats were able to sustain higher membrane potential and respiratory rate. In addition, mitochondria from Lou/C rats displayed a decrease in OPE that cannot be explained by increased expression of UCP2 but rather to a slip in proton pumping by cytochrome oxidase.

Conclusions:

Liver mitochondria from Lou/C rats display higher reactive oxygen species (ROS) generation but to deplete upstream electron-rich intermediates responsible for ROS generation, these animals increased intrinsic uncoupling of cytochrome oxidase. It is likely that liver mitochondrial properties allowed this strain of rat to display higher insulin sensitivity and resist diet-induced obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Couturier K, Servais S, Koubi H, Sempore B, Sornay-Mayet MH, Cottet-Emard JM et al. Metabolic characteristics and body composition in a model of anti-obese rats (Lou/C). Obes Res 2002; 10: 188–195.

    Article  CAS  PubMed  Google Scholar 

  2. Helies JM, Diane A, Langlois A, Larue-Achagiotis C, Fromentin G, Tomé D et al. Comparison of fat storage between Fischer 344 and obesity-resistant Lou/C rats fed different diets. Obes Res 2005; 13: 3–10.

    Article  CAS  PubMed  Google Scholar 

  3. Kappeler L, Zizzari P, Grouselle D, Epelbaum J, Bluet-Pajot MT . Plasma and hypothalamic peptide-hormone levels regulating somatotroph function and energy balance in fed and fasted states: a comparative study in four strains of rats. J Neuroendocrinol 2004; 16: 980–988.

    Article  CAS  PubMed  Google Scholar 

  4. Perrin D, Soulage C, Pequignot JM, Geloen A . Resistance to obesity in Lou/C rats prevents ageing-associated metabolic alterations. Diabetologia 2003; 46: 1489–1496.

    Article  CAS  PubMed  Google Scholar 

  5. Abdoulaye D, Wetzler S, Goubern M, Helies JM, Fromentin G, Tomé D et al. Comparison of energy balance in two inbred strains of rats: Fischer F344 prone to obesity and Lou rats resistant to obesity. Physiol Behav 2006; 87: 245–250.

    Article  CAS  PubMed  Google Scholar 

  6. Newby FD, DiGirolamo M, Cotsonis GA, Kutner MH . Model of spontaneous obesity in aging male Wistar rats. Am J Physiol 1990; 259: R1117–R1125.

    CAS  PubMed  Google Scholar 

  7. Alliot J, Boghossian S, Jourdan D, Veyrat-Durebex C, Pickering G, Menial-Denis D et al. The LOU/c/jall rat as an animal model of healthy aging? J Gerontol A Biol Sci Med Sci 2002; 57: B312–B320.

    Article  PubMed  Google Scholar 

  8. Veyrat-Durebex C, Alliot J . Changes in pattern of macronutrient intake during aging in male and female rats. Physiol Behav 1997; 62: 1273–1278.

    Article  CAS  PubMed  Google Scholar 

  9. Kappeler L, Zizzari P, Alliot J, Epelbaum J, Bluet-Pajot MT . Delayed age-associated decrease in growth hormone pulsatile secretion and increased orexigenic peptide expression in the Lou C/JaLL rat. Neuroendocrinology 2004; 80: 273–283.

    Article  CAS  PubMed  Google Scholar 

  10. Merry BJ . Calorie restriction and age-related oxidative stress. Ann NY Acad Sci 2000; 908: 180–198.

    Article  CAS  PubMed  Google Scholar 

  11. Sohal RS, Weindruch R . Oxidative stress, caloric restriction, and aging. Science 1996; 273: 59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu BP . Aging and oxidative stress: modulation by dietary restriction. Free Radic Biol Med 1996; 21: 651–668.

    Article  CAS  PubMed  Google Scholar 

  13. Frisard M, Ravussin E . Energy metabolism and oxidative stress: impact on the metabolic syndrome and the aging process. Endocrine 2006; 29: 27–32.

    Article  CAS  PubMed  Google Scholar 

  14. Couturier K, Servais S, Koubi H, Sempore B, Cottet-Emard JM, Guigas B et al. Metabolic and hormonal responses to exercise in the anti-obese Lou/C rats. Int J Obes Relat Metab Disord 2004; 28: 972–978.

    Article  CAS  PubMed  Google Scholar 

  15. Garait B, Couturier K, Servais S, Letexier D, Perrin D, Batandier C et al. Fat intake reverses the beneficial effects of low caloric intake on skeletal muscle mitochondrial H(2)O(2) production. Free Radic Biol Med 2005; 39: 1249–1261.

    Article  CAS  PubMed  Google Scholar 

  16. Barja G . The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 2002; 34: 227–233.

    Article  CAS  PubMed  Google Scholar 

  17. Nogueira V, Rigoulet M, Piquet MA, Devin A, Fontaine E, Leverve XM . Mitochondrial respiratory chain adjustment to cellular energy demand. J Biol Chem 2001; 276: 46104–46110.

    Article  CAS  PubMed  Google Scholar 

  18. Kamo N, Muratsugu M, Hongoh R, Kobatake Y . Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 1979; 49: 105–121.

    Article  CAS  PubMed  Google Scholar 

  19. Williams Jr JN . A method for the simultaneous quantitative estimation of cytochromes A, B, C1, and C in mitochondria. Arch Biochem Biophys 1964; 107: 537–543.

    Article  CAS  PubMed  Google Scholar 

  20. Verity MA, Turnbull DM . Assay of acyl-CoA dehydrogenase activity in frozen muscle biopsies: application to medium-chain acyl-CoA dehydrogenase deficiency. Biochem Med Metab Biol 1993; 49: 351–362.

    Article  CAS  PubMed  Google Scholar 

  21. Alves-Guerra MC, Rousset S, Pecqueur C, Mallat Z, Blanc J, Tedgui A et al. Bone marrow transplantation reveals the in vivo expression of the mitochondrial uncoupling protein 2 in immune and nonimmune cells during inflammation. J Biol Chem 2003; 278: 42307–42312.

    Article  CAS  PubMed  Google Scholar 

  22. Brand MD, Chien LF, Diolez P . Experimental discrimination between proton leak and redox slip during mitochondrial electron transport. Biochem J 1994; 297 (Pt 1): 27–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hurtaud C, Gelly C, Bouillaud F, Levi-Meyrueis C . Translation control of UCP2 synthesis by the upstream open reading frame. Cell Mol Life Sci 2006; 63: 1780–1789.

    Article  CAS  PubMed  Google Scholar 

  24. Capitanio N, Capitanio G, Demarinis DA, De Nitto E, Massari S, Papa S . Factors affecting the H+/e stoichiometry in mitochondrial cytochrome c oxidase: influence of the rate of electron flow and transmembrane delta pH. Biochemistry 1996; 35: 10800–10806.

    Article  CAS  PubMed  Google Scholar 

  25. Gredilla R, Barja G, Lopez-Torres M . Effect of short-term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria and location of the free radical source. J Bioenerg Biomembr 2001; 33: 279–287.

    Article  CAS  PubMed  Google Scholar 

  26. Hagopian K, Harper ME, Ram JJ, Humble SJ, Weindruch R, Ramsey JJ . Long-term calorie restriction reduces proton leak and hydrogen peroxide production in liver mitochondria. Am J Physiol Endocrinol Metab 2005; 288: E674–E684.

    Article  CAS  PubMed  Google Scholar 

  27. Lambert AJ, Merry BJ . Lack of effect of caloric restriction on bioenergetics and reactive oxygen species production in intact rat hepatocytes. J Gerontol A Biol Sci Med Sci 2005; 60: 175–180.

    Article  PubMed  Google Scholar 

  28. Lopez-Torres M, Gredilla R, Sanz A, Barja G . Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 2002; 32: 882–889.

    Article  CAS  PubMed  Google Scholar 

  29. Ramsey JJ, Hagopian K, Kenny TM, Koomson EK, Bevilacqua L, Weindruch R et al. Proton leak and hydrogen peroxide production in liver mitochondria from energy-restricted rats. Am J Physiol Endocrinol Metab 2004; 286: E31–E40.

    Article  CAS  PubMed  Google Scholar 

  30. Young TA, Cunningham CC, Bailey SM . Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch Biochem Biophys 2002; 405: 65–72.

    Article  CAS  PubMed  Google Scholar 

  31. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD . Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002; 277: 44784–44790.

    Article  CAS  PubMed  Google Scholar 

  32. Boveris A, Chance B . The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973; 134: 707–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGilvery R . Biochemistry: a Functional Approach. W.B. Saunders Company: Philadelphia, 1983, 909pp.

    Google Scholar 

  34. Wei Yuren WD, Topczewksi F, Pagliassotti Michael J . Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol 2006; 291: E275–E281.

    CAS  Google Scholar 

  35. Lambert AJ, Merry BJ . Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergetics: reversal by insulin. Am J Physiol Regul Integr Comp Physiol 2004; 286: R71–R79.

    Article  CAS  PubMed  Google Scholar 

  36. Vanhove G, Van Veldhoven PP, Eyssen HJ, Mannaerts GP . Mitochondrial short-chain acyl-CoA dehydrogenase of human liver and kidney can function as an oxidase. Biochem J 1993; 292 (Pt 1): 23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Korshunov SS, Skulachev VP, Starkov AA . High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997; 416: 15–18.

    Article  CAS  PubMed  Google Scholar 

  38. Papa S, Guerrieri F, Capitanio N . A possible role of slips in cytochrome C oxidase in the antioxygen defense system of the cell. Biosci Rep 1997; 17: 23–31.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Fiskum G, Schubert D . Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 2002; 80: 780–787.

    Article  CAS  PubMed  Google Scholar 

  40. Kadenbach B . Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 2003; 1604: 77–94.

    Article  CAS  PubMed  Google Scholar 

  41. Larrouy D, Laharrague P, Carrera G, Viguerie-Bascands N, Levi-Meyrueis C, Fleury C et al. Kupffer cells are a dominant site of uncoupling protein 2 expression in rat liver. Biochem Biophys Res Commun 1997; 235: 760–764.

    Article  CAS  PubMed  Google Scholar 

  42. Nakatani T, Tsuboyama-Kasaoka N, Takahashi M, Miura S, Ezaki O . Mechanism for peroxisome proliferator-activated receptor-alpha activator-induced up-regulation of UCP2 mRNA in rodent hepatocytes. J Biol Chem 2002; 277: 9562–9569.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Z, Pei H, Kaeck M, Lu J . Mammary cancer promotion and MAPK activation associated with consumption of a corn oil-based high-fat diet. Nutr Cancer 1999; 34: 140–146.

    Article  CAS  PubMed  Google Scholar 

  44. Slim RM, Toborek M, Watkins BA, Boissonneault GA, Hennig B . Susceptibility to hepatic oxidative stress in rabbits fed different animal and plant fats. J Am Coll Nutr 1996; 15: 289–294.

    Article  CAS  PubMed  Google Scholar 

  45. Kritchevsky D . Colorectal cancer: the role of dietary fat and caloric restriction. Mutat Res 1993; 290: 63–70.

    Article  CAS  PubMed  Google Scholar 

  46. Ishigaki Y, Katagiri H, Yamada T, Ogihara T, Imai J, Uno K et al. Dissipating excess energy stored in the liver is a potential treatment strategy for diabetes associated with obesity. Diabetes 2005; 54: 322–332.

    Article  CAS  PubMed  Google Scholar 

  47. Lee CF, Liu CY, Hsieh RH, Wei YH . Oxidative stress-induced depolymerization of microtubules and alteration of mitochondrial mass in human cells. Ann NY Acad Sci 2005; 1042: 246–254.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from INSERM/INRA (AIP 02 P00275). We thank F Bouillaud (BIOTRAM UPR9078, CNRS, Paris, France) for the kind gift of UCP2 antibody, Cindy Tellier for taking care of the rats and Blandine Garait for practical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Favier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacraz, G., Couturier, K., Taleux, N. et al. Liver mitochondrial properties from the obesity-resistant Lou/C rat. Int J Obes 32, 629–638 (2008). https://doi.org/10.1038/sj.ijo.0803779

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803779

Keywords

This article is cited by

Search

Quick links