Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Review Article

Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence

Abstract

In spite of its high impact on cardiovascular and renal disease, knowledge on risk factors for the development of high blood pressure (HBP) is limited. Mild chronic inflammation may play a significant role in the incidence of HBP. A persistent low-grade inflammation state could be associated with high but within the ‘normal range’ cytokine plasma concentration. By impairing the capacity of the endothelium to generate vasodilating factors, particularly nitric oxide (NO), elevated cytokines may lead to the development of endothelial dysfunction, chronic impaired vasodilation, and HBP. These alterations in the L-arginine : NO pathway may play a major role in the development of HBP in young subjects, with inflammation-related alterations in the production of cyclo-oxygenase-derived vasoconstrictors becoming more prominent with advanced age. Cross-sectional independent associations between HBP and plasma levels of C-reactive protein, interleukin-6, and tissue necrosis factor alpha have been reported, but no prospective evidence of these associations is currently available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Burt VL et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension 1995; 25: 305–313.

    Article  CAS  PubMed  Google Scholar 

  2. Hodgson TA, Cai L . Medical care expenditures for hypertension, its complications, and its comorbidities. Med Care 2001; 39: 599–615.

    Article  CAS  PubMed  Google Scholar 

  3. Ridker PM et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101: 1767–1772.

    Article  CAS  PubMed  Google Scholar 

  4. Ridker PM et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342: 836–843.

    Article  CAS  PubMed  Google Scholar 

  5. Ridker PM et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997; 336: 973–979.

    Article  CAS  PubMed  Google Scholar 

  6. Sinisalo J et al. Relation of inflammation to vascular function in patients with coronary heart disease. Atherosclerosis 2000; 149: 403–411.

    Article  CAS  PubMed  Google Scholar 

  7. Hingorani AD et al. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 2000; 102: 994–999.

    Article  CAS  PubMed  Google Scholar 

  8. Panza JA et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22–27.

    Article  CAS  PubMed  Google Scholar 

  9. Iiyama K et al. Impaired endothelial function with essential hypertension assessed by ultrasonography. Am Heart J 1996; 132: 779–782.

    Article  CAS  PubMed  Google Scholar 

  10. Zizek B et al. Endothelial dysfunction in hypertensive patients and in normotensive offspring of subjects with essential hypertension. Heart 2001; 85: 215–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taddei S et al. Endothelium-dependent forearm vasodilation is reduced in normotensive subjects with familial history of hypertension. J Cardiovasc Pharmacol 1992; 20 (Suppl 12): S193–S195.

    Article  PubMed  Google Scholar 

  12. Mendall MA et al. C reactive protein and its relation to cardiovascular risk factors: a population based cross sectional study. BMJ 1996; 312: 1061–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tracy RP et al. Lifetime smoking exposure affects the association of C-reactive protein with cardiovascular disease risk factors and subclinical disease in healthy elderly subjects. Arterioscler Thromb Vase Biol 1997; 17: 2167–2176.

    Article  CAS  Google Scholar 

  14. Hak AE et al. Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler Thromb Vase Biol 1999; 19: 1986–1991.

    Article  CAS  Google Scholar 

  15. Koenig W et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 1999; 99: 237–242.

    Article  CAS  PubMed  Google Scholar 

  16. Yudkin JS et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999; 19: 972–978.

    Article  CAS  PubMed  Google Scholar 

  17. Ford ES, Giles WH . Serum C-reactive protein and self-reported stroke: findings from the Third National Health and Nutrition Examination Survey. Arterioscler Thromb Vase Biol 2000; 20: 1052–1056.

    Article  CAS  Google Scholar 

  18. Doggen CJ et al. C-reactive protein, cardiovascular risk factors and the association with myocardial infarction in men. J Intern Med 2000; 248: 406–414.

    Article  CAS  PubMed  Google Scholar 

  19. Margaglione M et al. C-reactive protein in offspring is associated with the occurrence of myocardial infarction in first-degree relatives. Arterioscler Thromb Vase Biol 2000; 20: 198–203.

    Article  CAS  Google Scholar 

  20. Festa A et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102: 42–47.

    Article  CAS  PubMed  Google Scholar 

  21. Onat A et al. C-reactive protein and coronary heart disease in western Turkey. Am J Cardiol 2001; 88: 601–607.

    Article  CAS  PubMed  Google Scholar 

  22. Yamada S et al. Distribution of serum C-reactive protein and its association with atherosclerotic risk factors in a Japanese population: Jichi Medical School Cohort Study. Am J Epidemiol 2001; 153: 1183–1190.

    Article  CAS  PubMed  Google Scholar 

  23. Bautista LE et al. Is C-reactive protein an independent risk factor for essential hypertension? J Hypertens 2001; 19: 857–861.

    Article  CAS  PubMed  Google Scholar 

  24. Rohde LE et al. Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol 1999; 84: 1018–1022.

    Article  CAS  PubMed  Google Scholar 

  25. Bellelli G et al. Lack of nighttime dipping of blood pressure in hypertensive elderly patients is associated with elevated C-reactive protein serum levels. J Hypertens 2001; 191: 2107.

    Article  Google Scholar 

  26. Baumann H, Gauldie J . The acute phase response. Immunol Today 1994; 15: 74–80.

    Article  CAS  PubMed  Google Scholar 

  27. Mendall MA et al. Relation of serum cytokine concentrations to cardiovascular risk factors and coronary heart disease. Heart 1997; 78: 273–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rifai N et al. Inflammatory markers in men with angiographically documented coronary heart disease. Clin Chem 1999; 45: 1967–1973.

    Article  CAS  PubMed  Google Scholar 

  29. Sheu WHH et al. Plasma tumor necrosis factor alpha levels and insulin sensitivity in hypertensive subjects. Clin Exp Hypertens 2000; 22: 595–606.

    Article  CAS  PubMed  Google Scholar 

  30. Volpato S et al. Cardiovascular disease, interleukin-6, and risk of mortality in older women: the women's health and aging study. Circulation 2001; 103: 947–953.

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez-Real JM et al. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab 2001; 86: 1154–1159.

    Article  CAS  PubMed  Google Scholar 

  32. Chae CU et al. Blood pressure and inflammation in apparently healthy men. Hypertension 2001; 38: 399–403.

    Article  CAS  PubMed  Google Scholar 

  33. Ito H et al. Association of serum tumor necrosis factor-alpha with serum low-density lipoprotein-cholesterol and blood pressure in apparently healthy Japanese women. Clin Exp Pharmacol Physiol 2001; 28: 188–192.

    Article  CAS  PubMed  Google Scholar 

  34. Furumoto T et al. Association of cardiovascular risk factors and endothelial dysfunction in Japanese hypertensive patients: implications for early atherosclerosis. Hypertens Res 2002; 25: 475–480.

    Article  PubMed  Google Scholar 

  35. Woods A et al. Genetics of inflammation and risk of coronary artery disease: the central role of interleukin-6. Eur Heart J 2000; 21: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  36. Tilg H et al. IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol Today 1997; 18: 428–432.

    Article  CAS  PubMed  Google Scholar 

  37. Bhagat K, Vallance P . Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo. Circulation 1997; 96: 3042–3047.

    Article  CAS  PubMed  Google Scholar 

  38. Dorffel Y et al. Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension 1999; 34: 113–117.

    Article  CAS  PubMed  Google Scholar 

  39. Zinman B et al. Circulating tumor necrosis factor-alpha concentrations in a native Canadian population with high rates of type 2 diabetes mellitus. J Clin Endocrinol Metab 1999; 84: 272–278.

    CAS  PubMed  Google Scholar 

  40. Hotamisligil GS et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pausova Z et al. Role of tumor necrosis factor-alpha gene locus in obesity and obesity-associated hypertension in French Canadians. Hypertension 2000; 36: 14–19.

    Article  CAS  PubMed  Google Scholar 

  42. Dalziel B et al. Association of the TNF-alpha-308 G/A promoter polymorphism with insulin resistance in obesity. Obes Res 2002; 10: 401–407.

    Article  CAS  PubMed  Google Scholar 

  43. Ferreri NR et al. Tumor necrosis factor-alpha-angiotensin interactions and regulation of blood pressure. J Hypertens 1997; 15: 1481–1484.

    Article  CAS  PubMed  Google Scholar 

  44. Reid IA . Vasoactive Peptides. In: BG Katzung (ed). Basic and Clinical Pharmacology. Lange Medical Books/McGraw-Hill: New York, NY, 2001, pp 292–310.

    Google Scholar 

  45. Fernandez-Real JM et al. Shedding of TNF-alpha receptors, blood pressure, and insulin sensitivity in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 2002; 282: 952–959.

    Article  Google Scholar 

  46. Visser M et al. Low-grade systemic inflammation in overweight children. Pediatrics 2001; 107: E13.

    Article  CAS  PubMed  Google Scholar 

  47. Accini JL et al. Colombian Study to Assess the Use of Noninvasive Determination of Endothelium-Mediated Vasodilation (CANDEV). Normal values and factors associated. Endothelium 2001; 86: 157–166.

    Article  Google Scholar 

  48. Cao H, Hegele RA . Human C-reactive protein (CRP) 1059G/C polymorphism. Hypertension 2000; 45: 100–101.

    CAS  Google Scholar 

  49. Pankow JS et al. Familial and genetic determinants of systemic markers of inflammation: the NHLBI family heart study. Atherosclerosis 2001; 154: 681–689.

    Article  CAS  PubMed  Google Scholar 

  50. Vane JR et al. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323: 27–36.

    Article  CAS  PubMed  Google Scholar 

  51. Palmer RM et al. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526.

    Article  CAS  PubMed  Google Scholar 

  52. Taylor SG, Weston AH . Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol Sci 1988; 9: 272–274.

    Article  CAS  PubMed  Google Scholar 

  53. Bunting S et al. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 1976; 12: 897–913.

    Article  CAS  PubMed  Google Scholar 

  54. Palmer RM et al. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666.

    Article  CAS  PubMed  Google Scholar 

  55. Vane JR, Botting RM . Formation by the endothelium of prostacyclin, nitric oxide and endothelin. J Lipid Mediat 1993; 6: 395–404.

    CAS  PubMed  Google Scholar 

  56. Moncada S, Higgs EA . Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J 1995; 9: 1319–1330.

    Article  CAS  PubMed  Google Scholar 

  57. Garland CJ et al. Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends Pharmacol Sci 1995; 16: 23–30.

    Article  CAS  PubMed  Google Scholar 

  58. Moncada S, Vane JR . Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 1978; 30: 293–331.

    CAS  PubMed  Google Scholar 

  59. Pomerantz KB, Hajjar DP . Eicosanoids in regulation of arterial smooth muscle cell phenotype, proliferative capacity, and cholesterol metabolism. Arteriosclerosis 1989; 9: 413–429.

    Article  CAS  PubMed  Google Scholar 

  60. Diederich D et al. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway. Am J Physiol 1990; 258: H445–H451.

    CAS  PubMed  Google Scholar 

  61. Luscher TF, Barton M . Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation 2000; 102: 2434–2440.

    Article  CAS  PubMed  Google Scholar 

  62. Boulanger CM . Secondary endothelial dysfunction: hypertension and heart failure. J Mol Cell Cardiol 1999; 31: 39–49.

    Article  CAS  PubMed  Google Scholar 

  63. Hirata Y et al. Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest 1993; 91: 1367–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hamberg M et al. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 1975; 72: 2994–2998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bouloumie A et al. Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension 1997; 30: 934–941.

    Article  CAS  PubMed  Google Scholar 

  66. Gryglewski RJ et al. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320: 454–456.

    Article  CAS  PubMed  Google Scholar 

  67. Morrow JD et al. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 1990; 87: 9383–9387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Delanty N et al. 8-Epi PGF2 alpha generation during coronary reperfusion. A potential quantitative marker of oxidant stress in vivo. Circulation 1997; 95: 2492–2499.

    Article  CAS  PubMed  Google Scholar 

  69. Vallance P et al. Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link? Lancet 1997; 349: 1391–1392.

    Article  CAS  PubMed  Google Scholar 

  70. Bhagat K et al. Endothelial ‘stunning’ following a brief exposure to endotoxin: a mechanism to link infection and infarction? Cardiovasc Res 1996; 32: 822–829.

    CAS  PubMed  Google Scholar 

  71. Taddei S et al. Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hypertension 1997; 29: 274–279.

    Article  CAS  PubMed  Google Scholar 

  72. Taddei S et al. Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation 1996; 94: 1298–1303.

    Article  CAS  PubMed  Google Scholar 

  73. Tesfamariam B, Ogletree ML . Dissociation of endothelial cell dysfunction and blood pressure in SHR. Am J Physiol 1995; 269: H189–H194.

    CAS  PubMed  Google Scholar 

  74. Ritter JM et al. Thromboxane A2 receptor antagonism and synthase inhibition in essential hypertension. Hypertension 1993; 22: 197–203.

    Article  CAS  PubMed  Google Scholar 

  75. Taddei S et al. Hypertension causes premature aging of endothelial function in humans. Hypertension 1997; 29: 736–743.

    Article  CAS  PubMed  Google Scholar 

  76. Yoshizumi M et al. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993; 73: 205–209.

    Article  CAS  PubMed  Google Scholar 

  77. Verma S et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002; 106: 913–919.

    Article  CAS  PubMed  Google Scholar 

  78. Heitzer T et al. Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL. Circulation 1996; 93: 1346–1353.

    Article  CAS  PubMed  Google Scholar 

  79. Pleiner J et al. High doses of vitamin C reverse Escherichia coli endotoxin-induced hyporeactivity to acetylcholine in the human forearm. Circulation 2002; 106: 1460–1464.

    Article  CAS  PubMed  Google Scholar 

  80. Taddei S et al. Effects of antihypertensive drugs on endothelial dysfunction: clinical implications. Drugs 2002; 62: 265–284.

    Article  CAS  PubMed  Google Scholar 

  81. Perticone F et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 2001; 104: 191–196.

    Article  CAS  PubMed  Google Scholar 

  82. Nomura S et al. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 2001; 158: 277–287.

    Article  CAS  PubMed  Google Scholar 

  83. Sterpetti AV et al. Shear stress increases the release of interleukin-1 and interleukin-6 by aortic endothelial cells. Surgery 1993; 114: 911–914.

    CAS  PubMed  Google Scholar 

  84. Chobanian AV, Alexander RW . Exacerbation of atherosclerosis by hypertension. Potential mechanisms and clinical implications. Arch Intern Med 1996; 156: 1952–1956.

    Article  CAS  PubMed  Google Scholar 

  85. Tracy RP et al. Relationship of C-reactive protein to risk of cardiovascular disease in the elderly. Results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arterioscler Thromb Vase Biol 1997; 17: 1121–1127.

    Article  CAS  Google Scholar 

  86. Panza JA . Endothelium, nitric oxide, and hypertension. In Panza JA, Cannon RO III (eds): Endothelium, Nitric Oxide, and Atherosclerosis. Futura Publishing Co, Inc., Armonk, NY, 1999; pp 147–162.

  87. Panza JA et al. Effect of antihypertensive treatment on endothelium-dependent vascular relaxation in patients with essential hypertension. J Am Coll Cardiol 1993; 21: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  88. Anderson TJ et al. Comparative study of ACE-inhibition, angiotensin II antagonism, and calcium channel blockade on flow-mediated vasodilation in patients with coronary disease (BANFF study). J Am Coll Cardiol 2000; 35: 60–66.

    Article  CAS  PubMed  Google Scholar 

  89. Vickers MA et al. Genotype at a promoter polymorphism of the interleukin-6 gene is associated with baseline levels of plasma C-reactive protein. Cardiovasc Res 2002; 53: 1029–1034.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L E Bautista.

Additional information

This article is a United States Government work paper as defined by the US copyright act.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bautista, L. Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J Hum Hypertens 17, 223–230 (2003). https://doi.org/10.1038/sj.jhh.1001537

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001537

Keywords

This article is cited by

Search

Quick links