Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Maternal and fetal variation in genes of cholesterol metabolism is associated with preterm delivery

Abstract

Objective:

To examine the contribution of variants in fetal and maternal cholesterol metabolism genes in preterm delivery (PTD).

Study Design:

A total of 40 single-nucleotide polymorphisms (SNPs) in 16 genes related to cholesterol metabolism were examined for 414 preterm infants (gestational ages 22 to 36 weeks; comprising 305 singletons and 109 twins) and at least 1 parent. Fetal effects were assessed using the transmission disequilibrium test (TDT) for each SNP, followed by a log linear model-based approach to utilize families with missing parental genotypes for those SNPs showing significance under TDT. Genetic variant effects were examined for a role in PTD, gestational age and birth weight. Maternal effects were estimated using a log linear model-based approach.

Result:

Among singleton gestations, suggestive association (P<0.01 without adjusting for multiple comparisons) was found between birth weight and fetal DHCR7 gene/SNP combinations (rs1630498, P=0.002 and rs2002064, P=0.003). Among all gestations, suggestive associations were found between PTD and fetal HMGCR (rs2303152, P=0.002) and APOA1 (rs 5070, P=0.004). The result for HMGCR was further supported by the log linear model-based test in the single births (P=0.007) and in all births (P=0.006). New associations (APOE and ABCA1) were observed when birth weight was normalized for gestational age suggesting independent effects of variants on birth weight separate from effects on PTD. Testing for maternally mediated genetic effects has identified suggestive association between ABCA1 (rs4149313, P=0.004) and decreased gestational age.

Conclusion:

Variants in maternal and fetal genes for cholesterol metabolism were associated with PTD and decreased birth weight or gestational age in this study. Genetic markers may serve as one mechanism to identify high-risk mothers and fetuses for targeted nutritional treatment and/or prevention of low birth weight or PTD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mattison DR, Damus K, Fiore E, Petrini J, Alter C . Preterm delivery: a public health perspective. Paediatr Perinat Epidemiol 2001; 15: 7–16.

    Article  PubMed  Google Scholar 

  2. Petrou S . The economic consequences of preterm birth during the first 10 years of life. BJOG 2005; 112 (s1): 10–15.

    Article  PubMed  Google Scholar 

  3. Schmitt SK, Sneed L, Phibbs CS . Costs of newborn care in California: a population-based study. Pediatrics 2006; 117 (1): 154–160.

    Article  PubMed  Google Scholar 

  4. Ananth CV, Vintzileos AM . Epidemiology of preterm birth and its clinical subtypes. J Matern Fetal Neonatal Med 2006; 19 (12): 773–782.

    Article  PubMed  Google Scholar 

  5. Slattery MM, Morrison JJ . Preterm delivery. Lancet 2002; 360 (9344): 1489–1497.

    Article  PubMed  Google Scholar 

  6. Crider KS, Whitehead N, Buus RM . Genetic variation associated with preterm birth: a HuGE review. Genet Med 2005; 7 (9): 593–604.

    Article  CAS  PubMed  Google Scholar 

  7. Porter TF, Fraser AM, Hunter CY, Ward RH, Varner MW . The risk of preterm birth across generations. Obstet Gynecol 1997; 90 (1): 63–67.

    Article  CAS  PubMed  Google Scholar 

  8. Dizon-Townson DS . Preterm labour and delivery: a genetic predisposition. Paediatr Perinat Epidemiol 2001; (Suppl 2): 57–62.

  9. Adams KM, Eschenbach DA . A genetic contribution towards preterm delivery. Semin Fetal Neonatal Med 2004; 9 (6): 445–452.

    Article  PubMed  Google Scholar 

  10. Cotten CM, Ginsburg GS, Goldberg RN, Speer MC . Geonomic analyses: a neonatology perspective. J Pediatr 2006; 148 (6): 720–726.

    Article  PubMed  Google Scholar 

  11. Christensen K, Murray JC . What genome-wide association studies can do for medicine. N Engl J Med 2007; 356 (11): 1094–1097.

    Article  CAS  PubMed  Google Scholar 

  12. Hao K, Wang X, Niu T, Xu X, Li A, Chang W et al. A candidate gene association study on preterm delivery: application of high-throughput genotyping technology and advanced statistical methods. Hum Mol Genet 2004; 13 (7): 683–691.

    Article  CAS  PubMed  Google Scholar 

  13. Fall CHD, Yajnik CS, Rao S, Davies AA, Brown N, Farrant HJW . Micronutrients and fetal growth. J Nutr 2003; 133 (5 Suppl 2): 1747S–1756S.

    Article  CAS  PubMed  Google Scholar 

  14. Khoury J, Henriksen T, Christophersen B, Tonstad S . Effect of a cholesterol-lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: a randomized clinical trial. Am J Obstet Gynecol 2005; 193 (4): 1292–1301.

    Article  CAS  PubMed  Google Scholar 

  15. Tabano S, Alvino G, Antonazzo P, Grati FR, Miozzo M, Cetin I . Placental LPL gene expression is increased in severe intrauterine growth-restricted pregnancies. Pediatr Res 2006; 59 (2): 250–253.

    Article  CAS  PubMed  Google Scholar 

  16. Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE . Maternal nutrition and fetal development. J Nutr 2004; 134 (9): 2169–2172.

    Article  CAS  PubMed  Google Scholar 

  17. Knoblauch H, Bauerfeind A, Toliat MR, Becker C, Luganskaja T, Günther UP et al. Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density lipoprotein and low-density lipoprotein cholesterol. Hum Mol Genet 2004; 13 (10): 993–1004.

    Article  CAS  PubMed  Google Scholar 

  18. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Laird NM, Horvath S, Xu X . Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000; 19 (Suppl 1): S36–S42.

    Article  PubMed  Google Scholar 

  20. Rabinowitz D, Laird N . A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000; 50 (4): 211–223.

    Article  CAS  PubMed  Google Scholar 

  21. Horvath S, Xu X, Laird NM . The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 2001; 9 (4): 301–306.

    Article  CAS  PubMed  Google Scholar 

  22. Weinberg CR . Allowing for missing parents in genetic studies of case-parent triads. Am J Hum Genet 1999; 64: 1186–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weinberg CR, Wilcox AJ, Lie RT . A log-linear approach to case-parent-triad data: assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 1998; 62 (4): 969–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schaid DJ, Sommer SS . Genotype relative risks: methods for design and analysis of candidate-gene association studies. Am J Hum Genet 1993; 53 (5): 1114–1126.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Weinberg CR . Allowing for missing parents in genetic studies of case-parent triads. Am J Hum Genet 1999; 64 (4): 1186–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kistner EO, Infante-Rivard C, Weinberg CR . A method for using incomplete triads to test maternally mediated genetic effects and parent-of-origin effects in relation to a quantitative trait. Am J Epidemiol 2006; 163 (3): 255–261.

    Article  PubMed  Google Scholar 

  27. Luke B . The evidence linking maternal nutrition and prematurity. J Perinat Med 2005; 33: 500–505.

    Article  CAS  PubMed  Google Scholar 

  28. Robinson JS, Moore VM, Owens JA, McMillen IC . Origins of fetal growth restriction. Eur J Obstet Gynecol Reprod Biol 2000; 92 (1): 13–19.

    Article  CAS  PubMed  Google Scholar 

  29. Bukowski R, Gahn D, Denning J, Saade G . Impairment of growth in fetuses destined to deliver preterm. Am J Obstet Gynecol 2001; 185: 463–467.

    Article  CAS  PubMed  Google Scholar 

  30. Barker DJ, Eriksson JG, Forsen T, Osmond C . Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002; 31: 1235–1239.

    Article  CAS  PubMed  Google Scholar 

  31. Wallace JM, Bourke DA, Aitken RP, Milne JS, Hay WW . Placental glucose transport in growth-restricted pregnancies induced by overnourished adolescent sheep. J Physiol 2003; 547: 85–94.

    Article  CAS  PubMed  Google Scholar 

  32. Castro LC, Avina RL . Maternal obesity and pregnancy outcomes. Curr Opin Obstet Gynecol 2002; 14: 601–606.

    Article  PubMed  Google Scholar 

  33. Stotland NE, Cheng YW, Hopkins LM, Caughey AB . Gestational weight gain and adverse neonatal outcome among term infants. Obstet Gynecol 2006; 108: 635–643.

    Article  PubMed  Google Scholar 

  34. DeWolf F, Brosens I, Renaer M . Fetal growth retardation and the maternal arterial supply of the human placenta in the absence of sustained hypertension. BJOG 1980; 87: 678–685.

    Article  CAS  Google Scholar 

  35. Kim YM, Bujold E, Chaiworapongsa T, Gomex R, Yoon BH, Thaler HT et al. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gynecol 2003; 189: 1063–1069.

    Article  PubMed  Google Scholar 

  36. Robertsen WB, Brosens I, Dixon G . Maternal uterine vascular lesions in the hypertensive complications of pregnancy. Perspect Nephrol Hypertens 1976; 5: 115–127.

    Google Scholar 

  37. Corella D, Ordovas JM . Single nucleotide polymorphisms that influence lipid metabolism: interaction with dietary factors. Annu Rev Nutr 2005; 25: 341–390.

    Article  CAS  PubMed  Google Scholar 

  38. Benn M, Nordestgaard BG, Jensen JS, Grande P, Sillesen H, Tybjaerg-Hansen A . Polymorphism in APOB associated with increased low-density lipoprotein levels in both genders in the general population. J Clin Endocrinol Metab 2005; 90 (10): 5797–5803.

    Article  CAS  PubMed  Google Scholar 

  39. Sorli JV, Corella D, Frances F, Ramirez JB, Gonzales JI, Guillen M et al. The effect of the APOE polymorphism on HDL-C concentrations depends on the cholesterol ester transfer protein gene variation in a Southern European population. Clin Chim Acta 2006; 366 (1–2): 196–203.

    Article  CAS  PubMed  Google Scholar 

  40. Hirschhorn JN . Genetic approaches to studying common diseases and complex traits. Pediatr Res 2005; 57: 74R–77R.

    Article  PubMed  Google Scholar 

  41. Effects of Omega-3 Fatty Acids on Child and Maternal Health AHRQ Publication No 05-E025-2 August 2005.

  42. Mitchell LE, Weinberg CR . Evaluation of offspring and maternal genetic effects on disease risk using a family-based approach: the ‘pent’ design. Am J Epidemiol 2005; 162: 676–685.

    Article  PubMed  Google Scholar 

  43. Olsen J, Melbye M, Olsen SF, Sørensen TI, Aaby P, Andersen AM et al. The Danish National Birth Cohort–its background, structure and aim. Scand J Public Health 2001; 29 (4): 300–307.

    Article  CAS  PubMed  Google Scholar 

  44. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH . Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305 (5685): 869–872.

    Article  CAS  PubMed  Google Scholar 

  45. Edison RJ, Berg K, Remaley A, Kelley R, Rotimi C, Stevenson RE et al. Adverse birth outcomes among mothers with low serum cholesterol. Pediatrics 2007, in press.

Download references

Acknowledgements

We thank, in particular, the families that participated in this study. The GCRC nurses at Iowa, Karen Johnson, Gretchen Cress, Nancy Krutzfield, Laura Knosp were essential in contacting, enrolling and sampling families. Kristin Orr and Cara Zimmerman were integral in sample organization. Sandy Daack-Hirsch assisted with consent protocols and Susie McConnell with manuscript preparation. The work was supported by NIH grant HD052953 and March of Dimes grant FY05-126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Murray.

Additional information

Supplementary Information accompanies the paper on the Journal of Perinatology website (http://www.nature.com/jp)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steffen, K., Cooper, M., Shi, M. et al. Maternal and fetal variation in genes of cholesterol metabolism is associated with preterm delivery. J Perinatol 27, 672–680 (2007). https://doi.org/10.1038/sj.jp.7211806

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211806

Keywords

This article is cited by

Search

Quick links