Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

MDS

Deletions of PURA, at 5q31, and PURB, at 7p13, in myelodysplastic syndrome and progression to acute myelogenous leukemia

Abstract

Deletions or monosomy of chromosomes 5 and 7 are frequently observed in myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML). In this study two genes, PURA and PURB, encoding functionally cooperative proteins in the Pur family, are localized to chromosome bands 5q31.1 and 7p13, respectively. One or both of these loci are shown to be hemizygously deleted in 60 MDS or AML patients using fluorescence in situ hybridization (FISH). High-resolution mapping of PURA localizes it approximately 1.1 Mb telomeric to the EGR-1 gene. Frequency of PURA deletion and segregation with EGR-1 indicate that PURA is within the most commonly deleted segment in myeloid disorders characterized by del(5)(q31). No mutations have been detected within the coding sequence of PURA. Concurrent deletions of PURA and PURB occur in mds at a rate nearly 1.5-fold higher than statistically expected and in aml at a rate >5-fold higher. This novel simultaneous deletion of two closely related gene family members may thus have consequences related to progression to AML. Purα, an Rb-binding protein, has been implicated in cell cycle control and differentiation, and Purα and Purβ are reported to function as heterodimers. Alterations in these genes could affect a delicate balance critical in myeloid development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Johansson B, Mertens F, Mitelman F . Cytogenetic deletion maps of hematologic neoplasms: circumstantial evidence for tumor suppressor loci Genes Chromosomes Cancer 1993 8: 205–218

    Article  CAS  Google Scholar 

  2. Boultwood J, Fidler C . Chromosomal deletions in myelodysplasia Leuk Lymphoma 1995 17: 71–78

    Article  CAS  Google Scholar 

  3. Vallespi T, Imbert M, Mecucci C, Preudhomme C, Fenaux P . Diagnosis, classification, and cytogenetics of myelodysplastic syndromes Haematologica 1998 83: 258–275

    CAS  PubMed  Google Scholar 

  4. Le Beau MM, Albain KS, Larson RA, Vardiman JW, Davis EM, Blough RR, Golomb HM, Rowley JD . Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and 7 J Clin Oncol 1986 4: 325–345

    Article  CAS  Google Scholar 

  5. Zhao N, Stoffel A, Wang PW, Eisenbart JD, Espinosa R 3rd, Larson RA, Le Beau MM . Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1–1.5 Mb and preparation of a PAC-based physical map Proc Natl Acad Sci USA 1997 94: 6948–6953

    Article  CAS  Google Scholar 

  6. Van den Berghe H, Michaux L . 5q−, twenty-five years later: a synopsis Cancer Genet Cytogenet 1997 94: 1–7

    Article  CAS  Google Scholar 

  7. Pedersen B . Anatomy of the 5q− deletion: different sex ratios and deleted 5q bands in MDS and AML Leukemia 1996 10: 1883–1890

    CAS  PubMed  Google Scholar 

  8. Nagarajan L, Zavadil J, Claxton D, Lu X, Fairman J, Warrington JA, Wasmuth JJ, Chinault AC, Sever CE, Slovak ML et al. Consistent loss of the D5S89 locus mapping telomeric to the interleukin gene cluster and centromeric to EGR-1 in patients with 5q− chromosome Blood 1994 83: 199–208

    CAS  PubMed  Google Scholar 

  9. Fairman J, Chumakov I, Chinault AC, Nowell PC, Nagarajan L . Physical mapping of the minimal region of loss in 5q− chromosome Proc Natl Acad Sci USA 1995 92: 7406–7410

    Article  CAS  Google Scholar 

  10. Horrigan SK, Westbrook CA, Kim AH, Banerjee M, Stock W, Larson RA . Polymerase chain reaction-based diagnosis of del (5q) in acute myeloid leukemia and myelodysplastic syndrome identifies a minimal deletion interval Blood 1996 88: 2665–2670

    CAS  PubMed  Google Scholar 

  11. Horrigan SK, Arbieva ZH, Xie HY, Kravarusic J, Fulton NC, Naik H, Le TT, Westbrook CA . Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31 Blood 2000 95: 2372–2377

    CAS  Google Scholar 

  12. Willman CL, Sever CE, Pallavicini MG, Harada H, Tanaka N, Slovak ML, Yamamoto H, Harada K, Meeker TC, List AF et al. Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia Science 1993 259: 968–971

    Article  CAS  Google Scholar 

  13. Goyert SM, Ferrero E, Rettig WJ, Yenamandra AK, Obata F, Le Beau MM . The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors Science 1988 239: 497–500

    Article  CAS  Google Scholar 

  14. Zavadil J, Brezinova J, Svoboda P, Zemanova Z, Michalova K . Smad5, a tumor suppressor candidate at 5q31.1, is hemizygously lost and not mutated in the retained allele in human leukemia cell line HL60 Leukemia 1997 11: 1187–1192

    Article  CAS  Google Scholar 

  15. Johansson B, Mertens F, Mitelman F . Primary vs. secondary neoplasia-associated chromosomal abnormalities – balanced rearrangements vs genomic imbalances? Genes Chromosomes Cancer 1996 16: 155–163

    Article  CAS  Google Scholar 

  16. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, Loh M, Felix C, Roy DC, Busque L, Kurnit D, Willman C, Gewirtz AM, Speck NA, Bushweller JH, Li FP, Gardiner K, Poncz M, Maris JM, Gilliland DG . Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia (see comments) Nat Genet 1999 23: 166–175

    Article  CAS  Google Scholar 

  17. Liang H, Fairman J, Claxton DF, Nowell PC, Green ED, Nagarajan L . Molecular anatomy of chromosome 7q deletions in myeloid neoplasms: evidence for multiple critical loci Proc Natl Acad Sci USA 1998 95: 3781–3785

    Article  CAS  Google Scholar 

  18. Mecucci C, Van Orshoven A, Boogaerts M, Michaux JL, Van den Berghe H . Characterization of deletions of chromosome 7 short arm occurring as primary karyotypic anomaly in acute myeloid leukaemia (published erratum appears in Br J Haematol 1989 Jun;72(2):300) Br J Haematol 1989 71: 13–17

    Article  CAS  Google Scholar 

  19. Bergemann AD, Ma ZW, Johnson EM . Sequence of cDNA comprising the human pur gene and sequence-specific single-stranded-DNA-binding properties of the encoded protein Mol Cell Biol 1992 12: 5673–5682

    Article  CAS  Google Scholar 

  20. Kelm RJ Jr, Elder PK, Strauch AR, Getz MJ . Sequence of cDNAs encoding components of vascular actin single-stranded DNA-binding factor 2 establish identity to Puralpha and Purbeta J Biol Chem 1997 272: 26727–26733

    Article  Google Scholar 

  21. Ma ZW, Pejovic T, Najfeld V, Ward DC, Johnson EM . Localization of PURA, the gene encoding the sequence-specific single- stranded-DNA-binding protein Pur alpha, to chromosome band 5q31 Cytogenet Cell Genet 1995 71: 64–67

    Article  CAS  Google Scholar 

  22. Ma ZW, Bergemann AD, Johnson EM . Conservation in human and mouse Pur alpha of a motif common to several proteins involved in initiation of DNA replication Gene 1994 149: 311–314

    Article  CAS  Google Scholar 

  23. Herault Y, Chatelain G, Brun G, Michel D . The PUR element stimulates transcription and is a target for single strand-specific binding factors conserved among vertebrate classes Cell Mol Biol Res 1993 39: 717–725

    CAS  PubMed  Google Scholar 

  24. Muralidharan V, Cort L, Meier E, Blankenhorn EP, Khalili K . Molecular characterization and chromosomal localization of mouse Puralpha gene J Cell Biochem 2000 77: 1–5

    Article  CAS  Google Scholar 

  25. Bergemann AD, Johnson EM . The HeLa Pur factor binds single-stranded DNA at a specific element conserved in gene flanking regions and origins of DNA replication Mol Cell Biol 1992 12: 1257–1265

    Article  CAS  Google Scholar 

  26. Chang CF, Gallia GL, Muralidharan V, Chen NN, Zoltick P, Johnson E, Khalili K . Evidence that replication of human neurotropic JC virus DNA in glial cells is regulated by the sequence-specific single-stranded DNA-binding protein Pur alpha J Virol 1996 70: 4150–4156

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Krachmarov CP, Chepenik LG, Barr-Vagell S, Khalili K, Johnson EM . Activation of the JC virus Tat-responsive transcriptional control element by association of the Tat protein of human immunodeficiency virus 1 with cellular protein Pur alpha Proc Natl Acad Sci USA 1996 93: 14112–14117

    Article  CAS  Google Scholar 

  28. Haas S, Thatikunta P, Steplewski A, Johnson EM, Khalili K, Amini S . A 39-kD DNA-binding protein from mouse brain stimulates transcription of myelin basic protein gene in oligodendrocytic cells J Cell Biol 1995 130: 1171–1179

    Article  CAS  Google Scholar 

  29. Thatikunta P, Sawaya BE, Denisova L, Cole C, Yusibova G, Johnson EM, Khalili K, Amini S . Identification of a cellular protein that binds to Tat-responsive element of TGF beta-1 promoter in glial cells J Cell Biochem 1997 67: 466–477

    Article  CAS  Google Scholar 

  30. Kelm RJ Jr, Cogan JG, Elder PK, Strauch AR, Getz MJ . Molecular interactions between single-stranded DNA-binding proteins associated with an essential MCAT element in the mouse smooth muscle alpha-actin promoter J Biol Chem 1999 274: 14238–14245

    Article  Google Scholar 

  31. Mitelman F, ISCN. An International System for Human Cytogenetic Nomenclature Karger: Basel: 1995

  32. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M . Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector Proc Natl Acad Sci USA 1992 89: 8794–8797

    Article  CAS  Google Scholar 

  33. Kim UJ, Birren BW, Slepak T, Mancino V, Boysen C, Kang HL, Simon MI, Shizuya H . Construction and characterization of a human bacterial artificial chromosome library Genomics 1996 34: 213–218

    Article  CAS  Google Scholar 

  34. Bouffard GG, Idol JR, Braden VV, Iyer LM, Cunningham AF, Weintraub LA, Touchman JW, Mohr-Tidwell RM, Peluso DC, Fulton RS, Ueltzen MS, Weissenbach J, Magness CL, Green ED . A physical map of human chromosome 7: an integrated YAC contig map with average STS spacing of 79 kb Genome Res 1997 7: 673–692

    Article  CAS  Google Scholar 

  35. Hubert RS, Mitchell S, Chen XN, Ekmekji K, Gadomski C, Sun Z, Noya D, Kim UJ, Chen C, Shizuya H, Simon M, de Jong PJ, Korenberg JR . BAC and PAC contigs covering 3.5 Mb of the Down syndrome congenital heart disease region between D21S55 and MX1 on chromosome 21 Genomics 1997 41: 218–226

    Article  CAS  Google Scholar 

  36. Najfeld V, Menninger J, Ballard SG, Deguchi Y, Ward DC, Kehrl JH . Two diverged human homeobox genes involved in the differentiation of human hematopoietic progenitors map to chromosome 1, bands q41–42.1 Genes Chromosomes Cancer 1992 5: 343–347

    Article  CAS  Google Scholar 

  37. Swansbury GJ, Lawler SD, Alimena G, Arthur D, Berger R, van den Berghe H, Bloomfield CD, de la Chappelle A, Dewald G, Garson OM, Hagemeijer A, Mitelman F, Rowley JD, Sakurai M . Long-term survival in acute myelogenous leukemia: a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia Cancer Genet Cytogenet 1994 73: 1–7

    Article  CAS  Google Scholar 

  38. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyashiki K, Toyama K, Aul C, Mufti G, Bennett J . International scoring system for evaluating prognosis in myelodysplastic syndromes (see comments) (published erratum appears in Blood 1998 Feb 1;91(3):1100) Blood 1997 89: 2079–2088

    CAS  PubMed  Google Scholar 

  39. Mitelman F, Nilsson PG, Brandt L . Fourth International Workshop on Chromosomes in Leukemia 1982: correlation of karyotype and occupational exposure to potential mutagenic/carcinogenic agents in acute nonlymphocytic leukemia Cancer Genet Cytogenet 1984 11: 326–331

    Article  CAS  Google Scholar 

  40. Bloomfield CD, Goldman A, Hassfeld D, de la Chapelle A . Fourth International Workshop on Chromosomes in Leukemia 1982: clinical significance of chromosomal abnormalities in acute nonlymphoblastic leukemia Cancer Genet Cytogenet 1984 11: 332–350

    Article  CAS  Google Scholar 

  41. Soong R, Iacopetta BJ . A rapid and nonisotopic method for the screening and sequencing of p53 gene mutations in formalin-fixed, paraffin-embedded tumors Mod Pathol 1997 10: 252–258

    CAS  PubMed  Google Scholar 

  42. Johnson EM, Chen PL, Krachmarov CP, Barr SM, Kanovsky M, Ma ZW, Lee WH . Association of human Pur alpha with the retinoblastoma protein, Rb, regulates binding to the single-stranded DNA Pur alpha recognition element J Biol Chem 1995 270: 24352–24360

    Article  CAS  Google Scholar 

  43. Itoh H, Wortman MJ, Kanovsky M, Uson RR, Gordon RE, Alfano N, Johnson EM . Alterations in Pur(alpha) levels and intracellular localization in the CV-1 cell cycle Cell Growth Differ 1998 9: 651–665

    CAS  PubMed  Google Scholar 

  44. Stacey DW, Hitomi M, Kanovsky M, Gan L, Johnson EM . Cell cycle arrest and morphological alterations following microinjection of NIH3T3 cells with Pur alpha Oncogene 1999 18: 4254–4261

    Article  CAS  Google Scholar 

  45. Castro PD, Liang JC, Nagarajan L . Deletions of chromosome 5q13.3 and 17p loci cooperate in myeloid neoplasms Blood 2000 95: 2138–2143

    CAS  PubMed  Google Scholar 

  46. Le Beau MM, Espinosa Rd, Neuman WL, Stock W, Roulston D, Larson RA, Keinanen M, Westbrook CA . Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases Proc Natl Acad Sci USA 1993 90: 5484–5488

    Article  CAS  Google Scholar 

  47. Mahlknecht U, Bucala R, Hoelzer D, Verdin E . High resolution physical mapping of human HDAC3, a potential tumor suppressor gene in the 5q31 region Cytogenet Cell Genet 1999 86: 237–239

    Article  CAS  Google Scholar 

  48. Murre C, Waldmann RA, Morton CC, Bongiovanni KF, Waldmann TA, Shows TB, Seidman JG . Human gamma-chain genes are rearranged in leukaemic T cells and map to the short arm of chromosome 7 Nature 1985 316: 549–552

    Article  CAS  Google Scholar 

  49. Mishra SK, Helms C, Dorsey D, Permutt MA, Donis-Keller H . A 2-cM genetic linkage map of human chromosome 7p that includes 47 loci Genomics 1992 12: 326–334

    Article  CAS  Google Scholar 

  50. Willenbrink W, Halaschek J, Schuffenhauer S, Kunz J, Steinkasserer A . Cyclophilin A, the major intracellular receptor for the immunosuppressant cyclosporin A, maps to chromosome 7p11.2-p13: four pseudogenes map to chromosomes 3, 10, 14, and 18 Genomics 1995 28: 101–104

    Article  CAS  Google Scholar 

  51. Alitalo T, Kontula K, Koistinen R, Aalto-Setala K, Julkunen M, Janne OA, Seppala M, de la Chapelle A . The gene encoding human low-molecular weight insulin-like growth-factor binding protein (IGF-BP25): regional localization to 7p12-p13 and description of a DNA polymorphism Hum Genet 1989 83: 335–338

    Article  CAS  Google Scholar 

  52. Ehrenborg E, Larsson C . An EcoRI RFLP at the human insulin-like growth factor binding protein 2 gene (IGFBP2) Hum Mol Genet 1992 1: 552

    Article  CAS  Google Scholar 

  53. Molnar A, Wu P, Largespada DA, Vortkamp A, Scherer S, Copeland NG, Jenkins NA, Bruns G, Georgopoulos K . The Ikaros gene encodes a family of lymphocyte-restricted zinc finger DNA binding proteins, highly conserved in human and mouse J Immunol 1996 156: 585–592

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Angela Scalise for her technical assistance and critical reviewing of the conventional cytogenetic results. We also thank Dr Julie Korenberg and her laboratory for kindly providing the D5S658 and D5S487 BAC clones. This work was supported by NIH grant CA55219 (EMJ).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lezon-Geyda, K., Najfeld, V. & Johnson, E. Deletions of PURA, at 5q31, and PURB, at 7p13, in myelodysplastic syndrome and progression to acute myelogenous leukemia. Leukemia 15, 954–962 (2001). https://doi.org/10.1038/sj.leu.2402108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402108

Keywords

This article is cited by

Search

Quick links