Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Regulation of the acute myeloid leukemia cell line OCI/AML-2 by endothelial nitric oxide synthase under the control of a vascular endothelial growth factor signaling system

Abstract

It is generally accepted that the vascular endothelial growth factor (VEGF) signal system has no role in the maintenance of normal blood cell formation, although it obviously regulates the development of primitive hematopoiesis during an early stage of embryogenesis. The VEGF signaling pathway, however, might have some role in malignant hematopoiesis, since malignant hematopoietic cells, including acute myeloid leukemia (AML) cells, have been shown to express VEGF and its receptors. In endothelial cells, the VEGF/Flk-1/KDR signal system is a very important generator of nitric oxide (NO) through the activation of its downstream effectors phosphatidylinositol-3-OH-kinase (PI3-K), Akt kinase and endothelial NO synthase (eNOS). It is known that NO regulates hematopoiesis and modulates AML cell growth. The role of the VEGF signaling pathway in the control of AML cell growth through eNOS, however, has not been studied. By using the OCI/AML-2 cell line, which expresses VEGF receptor-2, ie Flk-1/KDR, eNOS and VEGF, as analyzed by flow cytometry, and produces VEGF into growth medium, as analyzed by ELISA, we showed that the Akt kinase and NOS activities in these cells were decreased by the inhibitors of VEGF, Flk-1/KDR and PI3-K, and NOS activity also by the direct inhibitor of NOS. The decreased NOS activity led to inhibition of clonogenic cell growth and, to some extent, induction of apoptosis. We also found that blast cells of bone marrow samples randomly taken from 14 AML patients uniformly expressed Flk-1/KDR and to varying degrees eNOS and VEGF, as analyzed by immunohistochemistry. We conclude that autocrine VEGF through Flk-1/KDR, by activating eNOS to produce NO through PI3-K/Akt kinase, maintains clonogenic cell growth in the OCI/AML-2 cell line. Since the patient samples did not express VEGF in all cases, it is possible that in vivo the regulatory connection between these two signal systems is also mediated via endocrine VEGF in addition to autocrine or paracrine VEGF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Stuehr DJ . Mammalian nitric oxide synthases Biochim Biophys Acta 1999 1411: 217–230

    Article  CAS  Google Scholar 

  2. Palmer RM, Ferrige AG, Moncada S . Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor Nature 1987 327: 524–526

    Article  CAS  Google Scholar 

  3. Hibbs JB Jr, Tantor RR, Vavrin Z, Rachlin EM . Nitric oxide. A cytotoxic activated macrophage effector molecule. (erratum 1989; 158: 624) Biochem Biophys Res Commun 1988 157: 87–94

    Article  Google Scholar 

  4. Moncada S, Palmer RM, Higgs EA . Nitric oxide physiology, pathophysiology and pharmacology Pharmacol Rev 1991 43: 109–142

    CAS  PubMed  Google Scholar 

  5. Nathan C . Nitric oxide as a secretory product of mammalian cells FASEB J 1992 6: 3051–3064

    Article  CAS  Google Scholar 

  6. Nathan CF, Xie QW . Nitric oxide synthases: roles, tolls, and controls Cell 1994 78: 915–918

    Article  CAS  Google Scholar 

  7. Hobbs AJ, Ignarro LJ . Nitric oxide-cyclic GMP signal transduction system Meth Enzymol 1996 269: 134–148

    Article  CAS  Google Scholar 

  8. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C Kearney M, Chen D, Symes JF, Fisman MC, Huang PL, Isner JM . Nitric oxide synthase modulates angiogenesis in response to ischemia J Clin Invest 1998 101: 2567–2578

    Article  CAS  Google Scholar 

  9. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC . Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells J Clin Invest 1997 100: 3131–3139

    Article  CAS  Google Scholar 

  10. Kroll J, Waltenberger J . VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR) Biochem Biophys Res Commun 1998 252: 743–746

    Article  CAS  Google Scholar 

  11. Hood JD, Meininger CJ, Ziche M, Granger HJ . VEGF upregulates eNOS message, protein, and NO production in human endothelial cells Am J Physiol 1998 274: H1054–H1058

    CAS  PubMed  Google Scholar 

  12. Dimmeler S, Fleming I, Fissithaler B, Hermann C, Busee R, Zeiher AM . Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation Nature 1999 399: 601–605

    Article  CAS  Google Scholar 

  13. Fulton D, Gratton J-P, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC . Regulation of endothelium-derived nitric oxide production by the protein kinase Akt Nature 1999 399: 597–601

    Article  CAS  Google Scholar 

  14. Michell BJ, Griffits JE, Michelhill KI, Rodriquez-Crespo I, Tiganis T, Bozinovski S, Ortiz de Motellano PR, Kemp BE, Pearson RB . The Akt kinase signals directly to endothelial nitric oxide synthase Curr Biol 1999 9: 845–848

    Article  CAS  Google Scholar 

  15. Shen BQ, Zioncheck TF . Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway J Biol Chem 1999 274: 33057–33063

    Article  CAS  Google Scholar 

  16. He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB . Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through Flk-1/KDR activation of c-Src J Biol Chem 1999 274: 25130–25135

    Article  CAS  Google Scholar 

  17. Veikkola T, Kärkkäinen M, Claesson-Welsh L, Alitalo K . Regulation of angiogenesis via vascular endothelial growth factor receptors Cancer Res 2000 60: 203–212

    CAS  PubMed  Google Scholar 

  18. Maciejewski JP, Selleri C, Sato T, Cho HJ, Keefer LK, Nathan CF, Young NS . Nitric oxide supression of human hematopoiesis in vitro. Contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha J Clin Invest 1995 96: 1085–1092

    Article  CAS  Google Scholar 

  19. Reykdal S, Abboud C, Liesveld J . Effect of nitric oxide production and oxygen tension on progenitor preservation in ex vivo culture Exp Hematol 1999 27: 441–450

    Article  CAS  Google Scholar 

  20. Richardson DR, Neumannova V, Nagy E, Ponka P . The effect of redox-related species of nitrogen monoxide on transferrin and iron uptake and cellular proliferation of erythroleukemia (K562) cells Blood 1995 86: 3211–3219

    CAS  PubMed  Google Scholar 

  21. Shami PJ, Sauls DL, Weinberg JB . Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide Leukemia 1998 12: 1461–1466

    Article  CAS  Google Scholar 

  22. Magrinat G, Mason SN, Shami PJ, Weinberg JB . Nitric oxide modulation of human leukemia cell differentiation and gene expression Blood 1992 80: 1880–1884

    CAS  PubMed  Google Scholar 

  23. Dugas N, Mossalayi MD, Calenda A, Leotard A, Becherel P, Mentz F, Ouaaz F, Arock M, Debre P, Dornand J, Dugas B . Role of nitric oxide in the anti-tumoral effect of retinoic acid and 1,25-dihydroxyvitamin D3 on human promonocytic leukemic cells Blood 1996 88: 3528–3534

    CAS  PubMed  Google Scholar 

  24. Mannick JB, Miao XQ, Stamler JS . Nitric oxide inhibits Fas-induced apoptosis J Biol Chem 1997 272: 24125–24128

    Article  CAS  Google Scholar 

  25. Dimmeler S, Haendeler J, Sause A, Zeiher AM . Nitric oxide inhibits APO-1/Fas-mediated cell death Cell Growth Differ 1998 9: 415–422

    CAS  PubMed  Google Scholar 

  26. Zhao H, Dugas N, Mathiot C, Delmer A, Dugas B, Sigaux F, Kolb J-P . B-cell chronic lymphocytic leukemia cells express a functional inducible nitric oxide synthase displaying anti-apoptotic activity Blood 1998 92: 1031–1043

    CAS  PubMed  Google Scholar 

  27. Sonoki T, Matsuzaki H, Nagasaki A, Hata H, Yoshida H, Matsuoka M, Kuribayashi N, Kimura T, Harada N, Takatsuki K, Mitsuya H, Mori M . Detection of inducible nitric oxide synthase (iNOS) mRNA by RT-PCR in ATL patients and HTLV-1 infected cell lines: clinical features and apoptosis by NOS inhibitor Leukemia 1999 13: 713–718

    Article  CAS  Google Scholar 

  28. Kolb J-P . Mechanisms involved in the pro-and anti-apoptotic role of NO in human leukemia Leukemia 2000 14: 1685–1694

    Article  CAS  Google Scholar 

  29. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G . A common precursor for hematopoietic and endothelial cells Development 1998 125: 725–732

    CAS  PubMed  Google Scholar 

  30. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu X-F, Breitman ML, Schuh AC . Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice Nature 1995 376: 62–70

    Article  CAS  Google Scholar 

  31. Hidaka M, Stanford W, Bernstein A . Conditional requirement for the Flk-1 receptor in the in vitro generation of early hematopoietic cells Proc Natl Acad Sci USA 1999 96: 7370–7375

    Article  CAS  Google Scholar 

  32. Schuh AC, Faloon P, Hu Q-L, Bhimani M, Choi K . In vitro hematopoietic and endothelial potential of flk-1−/− embryonic stem cells and embryos Proc Natl Acad Sci USA 1999 96: 2159–2164

    Article  CAS  Google Scholar 

  33. Ziegler BL, Valtieri M, Porada A, De Maria R, Muller R, Masella B, Gabbianelli M, Casella I, Pelosi E, Bock T, Zanjani ED, Peschle C . KDR receptor: a key marker defining hematopoietic stem cells Science 1999 285: 1553–1558

    Article  CAS  Google Scholar 

  34. McCulloch EA . Stem cell renewal and determination during clonal expansion in normal and leukaemic haemopoiesis Cell Prolif 1993 26: 399–425

    Article  CAS  Google Scholar 

  35. Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y . Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation Cancer Res 1995 55: 5687–5692

    CAS  PubMed  Google Scholar 

  36. Fielder W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, Hossfeld DK . Expression of Flt4 and its ligand VEGF-C in acute myeloid leukemia Leukemia 1997 11: 1234–1237

    Article  CAS  Google Scholar 

  37. Ratajczak MZ, Ratajczak J, Machalinski B, Majka M, Marlicz W, Carter A, Pietrzkowski Z, Gewirtz AM . Role of vascular endothelial growth factor (VEGF) and placenta-derived growth factor (PIGF) in regulating human haemapoietic cell growth Br J Haematol 1998 103: 969–979

    Article  CAS  Google Scholar 

  38. Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M, Giles F, Estrov Z, Barlogie B, Albitar M . Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia Blood 1999 94: 3717–3721

    CAS  PubMed  Google Scholar 

  39. Alitalo RL, Mustjoki S, Elonen E, Helminen P, Jansson S-E . Endothelial growth factors and their receptors in human leukemia Blood 1999 94: 70a (Abstr.)

    Google Scholar 

  40. Bellamy WT, Richter L, Frutiger Y, Grogan TM . Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies Cancer Res 1999 59: 728–733

    CAS  PubMed  Google Scholar 

  41. Dias S, Lane WJ, Wu Y, Choy M, Peichev M, Chadburn A, Hyjeck E, Roboz G, Hicklin D, Witte L, Rafii S . Neutralizing MoAb to VEGF receptors inhibit proliferation and migration of a subset of human leukemias through interaction with VEGFR-2 (KDR) and VEGFR-1 (FLT-1) Blood 1999 94: 620a (Abstr.)

    Google Scholar 

  42. Pruneri G, Bertolini F, Soligo D, Carboni N, Cortelezzi PF, Buffa R, Lambertenghi-Deliers G, Pezzella F . Angiogenesis in myelodysplastic syndromes Br J Cancer 1999 81: 1398–1401

    Article  CAS  Google Scholar 

  43. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia Blood 2000 95: 309–313

    CAS  PubMed  Google Scholar 

  44. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschälder, Hossfeld DK . Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia Blood 1997 89: 1870–1875

    CAS  PubMed  Google Scholar 

  45. Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J, Buchner T, Berdel WE, Mesters RM . Increased angiogenesis in the bone maroow of patients with acute myeloid leukemia Blood 2000 95: 2637–2644

    CAS  Google Scholar 

  46. Wang C, Curtis JE, Minden MD, McCulloch EA . Expression of a retinoic acid receptor gene in myeloid leukemia cells Leukemia 1989 4: 264–269

    Google Scholar 

  47. Bennett JM, Catovsky D, Daniel MT . Proposed revised criteria for the classification of acute myeloid leukemia Ann Intern Med 1985 103: 620–625

    Article  CAS  Google Scholar 

  48. Kawase T, Oguro A, Orikasa M, Burns DM . Characteristics of NaF-induced differentiation of HL-60 cells J Bone Miner Res 1996 11: 1676–1687

    Article  CAS  Google Scholar 

  49. Shami PJ, Moore JO, Gockerman JP, Hathorn JW, Misukonis MA, Weinberg JB . Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells Leuk Res 1995 19: 527–533

    Article  CAS  Google Scholar 

  50. Brüne B, von Knethen A, Sandau KB . Nitric oxide and its role in apoptosis Eur J Pharmacol 1998 351: 261–272

    Article  Google Scholar 

  51. Murphy MP . Nitric oxide and cell death Biochim Biophys Acta 1999 1411: 401–414

    Article  CAS  Google Scholar 

  52. Ferrajoli A, Estrov Z, Keating M, Lerner S, Manshouri T, Beran M, Kantarjian H, Albitar M . The level of vascular endothelial growth factor receptor-2 in peripheral blood chronic lymphocytic leukemia (CLL) cells correlates with patient survival Blood 1999 94: 536a (Abstr.)

    Google Scholar 

  53. Parenti A, Morbidelli L, Cui XL, Douglas JG, Hood JD, Granger HJ, Ledda F, Ziche M . Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinase 1/2 activation in post-capillary endothelium J Biol Chem 1998 273: 4220–4226

    Article  CAS  Google Scholar 

  54. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA . Mechanism of activation of protein kinase B by insulin and IGF-1 EMBO J 1996 15: 6541–6551

    Article  CAS  Google Scholar 

  55. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME . Akt promotes survival by phosphorylating and inhibiting a forkhead transcription factor Cell 1999 96: 857–868

    Article  CAS  Google Scholar 

  56. Barkett M, Gilmore TD . Control of apoptosis by Rel/NF-kB transcription factors Oncogene 1999 18: 6910–6924

    Article  CAS  Google Scholar 

  57. Cantley LC, Neel BG . New insights into tumor supression: PTEN supresses tumor formation by restraining the phosphoinositide 3-kinase/Akt pathway Proc Natl Acad Sci USA 1999 96: 4240–4245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs Raija Sirviö, Kirsi Kvist-Mäkelä, and Mr Manu Tuovinen for skilful technical assistance. This work was supported by the University of Oulu and the Oulu University Hospital.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koistinen, P., Siitonen, T., Mäntymaa, P. et al. Regulation of the acute myeloid leukemia cell line OCI/AML-2 by endothelial nitric oxide synthase under the control of a vascular endothelial growth factor signaling system. Leukemia 15, 1433–1441 (2001). https://doi.org/10.1038/sj.leu.2402217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402217

Keywords

Search

Quick links