Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Acute Non-Lymphocytic Leukemias

Mutations in the receptor tyrosine kinase pathway are associated with clinical outcome in patients with acute myeloblastic leukemia harboring t(8;21)(q22;q22)

Abstract

AML1-MTG8 generated by t(8;21) contributes to leukemic transformation, but additional events are required for full leukemogenesis. We examined whether mutations in the receptor tyrosine kinase (RTK) pathway could be the genetic events that cause acute myeloblastic leukemia (AML) harboring t(8;21). Mutations in the second tyrosine kinase domain, juxtamembrane (JM) domain and exon 8 of the C-KIT gene were observed in 10, one and three of 37 AML patients with t(8;21), respectively. Three patients showed an internal tandem duplication in the JM domain of the FLT3 gene. One patient had a mutation in the K-Ras gene at codon 12. As the occurrence of these mutations was mutually exclusive, a total of 18 (49%) patients showed mutations in the RTK pathway. These results suggest that activating mutations in the RTK pathway play a role in part as an additional event leading to the development of t(8;21) AML. The 6-year cumulative incidence of relapse in patients with RTK pathway mutations was 79.8%, compared with 13.5% in patients lacking such mutations (P=0.0029). Furthermore, the 6-year relapse-free survival in patients with mutations was 18% compared to 60% in those without mutations (P=0.0340), indicating that RTK mutations are associated with the clinical outcome in t(8;21) AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  2. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . The t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia clustered within a limited region of a novel gene, AML1. Proc Natl Acad Sci USA 1991; 88: 10431–10434.

    Article  CAS  Google Scholar 

  3. Nguyen S, Leblanc T, Fenaux P, Witz F, Blaise D, Pigneux A et al. A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 cases from the French AML Intergroup. Blood 2002; 99: 3517–3523.

    Article  CAS  Google Scholar 

  4. Baer MR, Stewart CC, Lawrence D, Arthur DC, Byrd JC, Davey FR et al. Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood 1997; 90: 1643–1648.

    CAS  PubMed  Google Scholar 

  5. Tallman MS, Hakimian D, Shaw JM, Lissner GS, Russell EJ, Variakojis D . Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol 1993; 11: 690–697.

    Article  CAS  Google Scholar 

  6. Schlenk RF, Benner A, Krauter J, Buchner T, Sauerland C, Ehninger G et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 2004; 22: 3741–3750.

    Article  CAS  Google Scholar 

  7. Asou N . The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit Rev Oncol Hematol 2003; 45: 129–150.

    Article  Google Scholar 

  8. Tenen DG . Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 2003; 3: 89–101.

    Article  CAS  Google Scholar 

  9. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  Google Scholar 

  10. Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  Google Scholar 

  11. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  Google Scholar 

  12. Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E et al. C-kit mutations in core binding factor leukemias. Blood 2000; 95: 726–727.

    CAS  PubMed  Google Scholar 

  13. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  14. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  Google Scholar 

  15. Wang YY, Zhou GB, Yin T, Chen B, Shi JY, Liang WX et al. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 2005; 102: 1104–1109.

    Article  CAS  Google Scholar 

  16. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  Google Scholar 

  17. Yamasaki H, Era T, Asou N, Sanada I, Matutes E, Yamaguchi K et al. High degree of myeloid differentiation and granulocytosis is associated with t(8;21) smoldering leukemia. Leukemia 1995; 9: 1147–1153.

    CAS  PubMed  Google Scholar 

  18. Asou N, Osato M, Okubo T, Yamasaki H, Hoshino K, Nishimura S et al. Acute myelomonoblastic leukemia carrying the PEBP2β/MYH11 fusion gene. Leuk Lymphoma 1998; 31: 81–91.

    Article  CAS  Google Scholar 

  19. Ohno R, Kobayashi T, Tanimoto M, Hiraoka A, Imai K, Asou N et al. Randomized study of individualized induction therapy with or without vincristine, and of maintenance-intensification therapy between 4 or 12 courses in adult acute myeloid leukemia. AML-87 Study of the Japan Adult Leukemia Study Group. Cancer 1993; 71: 3888–3895.

    Article  CAS  Google Scholar 

  20. Kobayashi T, Miyawaki S, Tanimoto M, Kuriyama K, Murakami H, Yoshida M et al. Randomized trials between behenoyl cytarabine and cytarabine in combination induction and consolidation therapy, and with or without ubenimex after maintenance/intensification therapy in adult acute myeloid leukemia. The Japan Leukemia Study Group. J Clin Oncol 1996; 14: 204–213.

    Article  CAS  Google Scholar 

  21. Miyawaki S, Tanimoto M, Kobayashi T, Minami S, Tamura J, Omoto E et al. No beneficial effect from addition of etoposide to daunorubicin, cytarabine, and 6-mercaptopurine in individualized induction therapy of adult acute myeloid leukemia: the JALSG-AML92 study. Japan Adult Leukemia Study Group. Int J Hematol 1999; 70: 97–104.

    CAS  PubMed  Google Scholar 

  22. Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 1993; 92: 1736–1744.

    Article  CAS  Google Scholar 

  23. Gari M, Goodeve A, Wilson G, Winship P, Langabeer S, Linch D et al. c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 1999; 105: 894–900.

    Article  CAS  Google Scholar 

  24. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2αB gene associated with myeloblastic leukemias. Blood 1999; 93: 1817–1824.

    CAS  Google Scholar 

  25. Matsuno N, Osato M, Yamashita N, Yanagida M, Nanri T, Fukushima T et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia 2003; 17: 2492–2499.

    Article  CAS  Google Scholar 

  26. Matsuno N, Nanri T, Kawakita T, Mitsuya H, Asou N . A novel FLT3 activation loop mutation N841K in acute myeloblastic leukemia. Leukemia 2005; 19: 480–481.

    Article  CAS  Google Scholar 

  27. Kanakura Y, Ikeda H, Kitayama H, Sugahara H, Furitsu T . Expression, function and activation of the proto-oncogene c-kit product in human leukemia cells. Leuk Lymphoma 1993; 10: 35–41.

    Article  CAS  Google Scholar 

  28. Paquette RL, Hsu NC, Koeffler HP . Analysis of c-kit gene integrity in aplastic anemia. Blood Cells Mol Dis 1996; 22: 159–168.

    Article  CAS  Google Scholar 

  29. Beghini A, Magnani I, Ripamonti CB, Larizza L . Amplification of a novel c-Kit activating mutation Asn(822)-Lys in the Kasumi-1 cell line: a t(8;21)-Kit mutant model for acute myeloid leukemia. Hematol J 2002; 3: 157–163.

    Article  CAS  Google Scholar 

  30. Nakano Y, Kiyoi H, Miyawaki S, Asou N, Ohno R, Saito H et al. Molecular evolution of acute myeloid leukaemia in relapse: unstable and FLT3 genes compared with p53 gene. Br J Haematol 1999; 104: 659–664.

    Article  CAS  Google Scholar 

  31. Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 2002; 99: 1364–1372.

    Article  CAS  Google Scholar 

  32. Valk PJ, Bowen DT, Frew ME, Goodeve AC, Lowenberg B, Reilly JT . Second hit mutations in the RTK/RAS signaling pathway in acute myeloid leukemia with inv(16). Haematologica 2004; 89: 106.

    CAS  PubMed  Google Scholar 

  33. Meshinchi S, Stirewalt DL, Alonzo TA, Zhang Q, Sweetser DA, Woods WG et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 2003; 102: 1474–1479.

    Article  CAS  Google Scholar 

  34. Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 2003; 121: 775–777.

    Article  CAS  Google Scholar 

  35. Broudy VC, Lin NL, Sabath DF . The fifth immunoglobulin-like domain of the Kit receptor is required for proteolytic cleavage from the cell surface. Cytokine 2001; 15: 188–195.

    Article  CAS  Google Scholar 

  36. Kohl TM, Schnittger S, Ellwart JW, Hiddemann W, Spiekermann K . KIT exon 8 mutations associated with core binding factor (CBF) – AML cause hyperactivation of the receptor in response to stem cell factor. Blood 2005; 105: 3319–3321.

    Article  CAS  Google Scholar 

  37. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998; 279: 577–580.

    Article  CAS  Google Scholar 

  38. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914.

    CAS  PubMed  Google Scholar 

  39. Matsuno N, Hoshino K, Nanri T, Kawakita T, Mitsuya H, Asou N . Transcriptional repression of the p15 gene predicts the clinical outcome of acute myeloblastic leukemia with intermediate and adverse cytogenetics. Leukemia 2004; 18: 1146–1148.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Drs Y Kanakura and M Mizuki for providing the cell line used in this study and Dr N Adachi for his kind help. We also thank Ms IM Nakayama for technical assistances. This work was supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Science and Culture, Grants-in-Aid for Cancer Research from the Japanese Ministry of Health and Welfare, and Public Trust Haraguchi Memorial Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Asou.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanri, T., Matsuno, N., Kawakita, T. et al. Mutations in the receptor tyrosine kinase pathway are associated with clinical outcome in patients with acute myeloblastic leukemia harboring t(8;21)(q22;q22). Leukemia 19, 1361–1366 (2005). https://doi.org/10.1038/sj.leu.2403803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403803

Keywords

This article is cited by

Search

Quick links