Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Expression of β-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis

Abstract

Activation of the Wnt/β-catenin pathway has recently been shown to be crucial to the establishment of leukemic stem cells in chronic myeloid leukemia. We sought to determine whether β-catenin was correlated to clonogenic capacity also in the acute myeloid leukemia (AML) setting. Eighty-two patients were retrospectively evaluated for β-catenin expression by Western blot. β-Catenin was expressed (although at various protein levels) in 61% of patients, and was undetectable in the remaining cases. In our cohort, β-catenin expression was correlated with the clonogenic proliferation of AML-colony forming cells (AML-CFC or CFU-L) in methylcellulose in the presence of 5637-conditioned medium, and more strikingly with self-renewing of leukemic cells, as assessed in vitro by a re-plating assay. In survival analyses, β-catenin appeared as a new independent prognostic factor predicting poor event-free survival and shortened overall survival (both with P<0.05). Furthermore, variations in β-catenin protein levels were dependent on post-transcriptional mechanisms involving the Wnt/β-catenin pathway only in leukemic cells. Indeed, β-catenin negative leukemic cells were found to increase β-catenin in response to Wnt3a agonist in contrast to normal counterparts. Altogether, our data pave the way to the evaluation of Wnt pathway inhibition as a new rationale for eradicating the clonogenic pool of AML cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pardal R, Clarke MF, Morrison SJ . Applying the priciples of stem cells biology to cancer. Nat Rev Cancer 2003; 3: 895–902.

    Article  CAS  PubMed  Google Scholar 

  2. Reya T, Morrison S, Clarke M, Weissman I . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  3. Polakis P . Wnt signalling and cancer. Genes Dev 2000; 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  4. Giles RH, van Es JH, Clevers H . Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 2003; 1653: 1–24.

    CAS  PubMed  Google Scholar 

  5. van Es JH, Barker N, Clevers H . You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev 2003; 13: 28–33.

    Article  CAS  PubMed  Google Scholar 

  6. Moore MAS, Spitzer G, Williams G, Metcalf D, Buckley J . Agar culture studies in 127 cases of untreated acute leukemia: the prognostic value of reclassification of leukemia according to in vitro growth characteristics. Blood 1994; 44: 1–18.

    Google Scholar 

  7. Vincent PC, Sutherland R, Bradley M, Lind D, Gunz FW . Marrow culture studies in acute leukemia at presentation and during remission. Blood 1977; 49: 903–912.

    CAS  PubMed  Google Scholar 

  8. Del Canizo M, Brufau A, Almeida J, Galende J, Garcia Marcos MA, Mota A et al. In vitro growth in acute myeloblastic leukemia: relationship with other clinico-biological characteristics of the disease. Br J Haematol 1998; 103: 137–142.

    Article  CAS  PubMed  Google Scholar 

  9. Van den Berg D, Sharma A, Bruno E, Hoffman R . Role of members of the Wnt gene family in human hematopoiesis. Blood 1998; 92: 3189–3202.

    CAS  PubMed  Google Scholar 

  10. Austin T, Solar G, Ziegler F, Liem L, Matthews W . A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 1997; 89: 3624–3635.

    CAS  PubMed  Google Scholar 

  11. Reya T, Duncan AW, Ailles L, Domen J, Scherer D, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 23: 409–414.

    Article  Google Scholar 

  12. Willert K, Brown JD, Danenberg E, Duncan A, Weissman IL, Reya T et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423: 448–452.

    Article  CAS  PubMed  Google Scholar 

  13. Staal FJ, Clevers HC . WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 2005; 1): 21–30.

    Article  Google Scholar 

  14. Brandon C, Eisenberg LM, Eisenberg CA . Wnt signaling modulates the diversification of hematopoietic cells. Blood 2000; 96: 4132–4141.

    CAS  PubMed  Google Scholar 

  15. Lu D, Zhao Y, Tawatao R, Cottam H, Sen M, Leoni LM et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2004; 101: 3118–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qiang YW, Endo Y, Rubin JS, Rudikoff S . Wnt signaling in B-cell neoplasia. Oncogene 2003; 22: 1536–1545.

    Article  CAS  PubMed  Google Scholar 

  17. Derksen P, Tijn E, Meijer H, Klok MD, MacGillavry MH, van Oers MH et al. Illegitimate Wnt signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 2004; 101: 6122–6127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jamieson C, Ailles L, Dylla S, Muijtjens M, Johnes C, Zehnder JL et al. Granulocyte-macrophage pogenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  19. Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004; 24: 2890–2904.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zheng X, Beissert T, Kukoc-Zivojnov N, Puccetti E, Altschmied J, Strolz C et al. catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood 2004; 103: 3535–3543.

    Article  CAS  PubMed  Google Scholar 

  21. Mc Whirter JR, Neuteboom ST, Wancewicz EV, Monia BP, Downing JR, Murre C . Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci USA 1999; 96: 11464–11469.

    Article  CAS  Google Scholar 

  22. Demur C, Muller C, Cassar G, Bousquet C, Laroche M, Laurent G . Acute myeloid leukemia cells with low p-glycoprotein expression and high Rhodamine 123 efflux capacity display high clonogenicity. Leukemia 1998; 12: 192–199.

    Article  CAS  PubMed  Google Scholar 

  23. Laredo J, Demur C, Muller C, Saivin S, Cassar G, Bousquet C et al. Effects of H-7 and staurosporine on proliferation and self-renewal of acute myeloid leukemia progenitors. Leukemia 1993; 7: 813–820.

    CAS  PubMed  Google Scholar 

  24. Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 2003; 4: 349–360.

    Article  CAS  PubMed  Google Scholar 

  25. Chung EJ, Hwang SG, Nguyen PM, Lee S, Kim JS, Kim JW et al. Regulation of leukemic cell adhesion, proliferation, and survival by β-catenin. Blood 2002; 100: 982–990.

    Article  CAS  PubMed  Google Scholar 

  26. Simon M, Grandage V, Linch D, Khwaja A . Constitutive activation of the Wnt/β-catenin pathway in acute myeloid leukemia. Oncogene 2005; 24: 2410–2420.

    Article  CAS  PubMed  Google Scholar 

  27. Tickenbrock L, Schwable J, Wiedehage M, Steffen B, Sargin B, Choudhary C et al. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood 2005; 105: 3699–3706.

    Article  CAS  PubMed  Google Scholar 

  28. Norgaard JM, Langkjer S, Palshof T, Clausen N, Pedersen b, Hokland P . Relation of blast cell survival and proliferation to chemotherapy resistance in AML. Br J Haematol 1996; 93: 888–897.

    Article  CAS  PubMed  Google Scholar 

  29. Richert-Boe KE, Bagby GC . In vitro hematopoiesis in myelodysplasia: liquid and soft-gel culture studies. Hematol Oncol Clin North Am 1992; 6: 543–556.

    Article  CAS  PubMed  Google Scholar 

  30. Hunter A, Rogers S, Roberts I, Barrett AJ, Russel N . Autonomous growth of blast cells is associated with reduced survival in acute myeloblastic leukemia. Blood 1993; 82: 899–903.

    CAS  PubMed  Google Scholar 

  31. Löwenberg B, Van Putten W, Touw I, Delwel R, Santini V . Autonomous proliferation of leukemic cells in vitro as a determinant of prognosis in adult acute myeloid leukemia. N Engl J Med 1993; 328: 614–619.

    Article  PubMed  Google Scholar 

  32. Ohler L, Berer A, Aletaha D, Kabrna E, Heinze G, Streubel B et al. Cytogenetic risk groups in acute myeloblastic leukemia differ greatly in their semi-solid colony growth. Br J Haematol 2001; 113: 120–125.

    Article  CAS  PubMed  Google Scholar 

  33. Serinsoz E, Neusch M, Busche G, Wasielewski R, Kreipe H, Bock O . Aberrant expression of beta-catenin discriminates acute myeloid leukaemia from acute lymphoblastic leukaemia. Br J Haematol 2004; 126: 313–319.

    Article  PubMed  Google Scholar 

  34. Tepstra W, Prins A, Ploemacher RE, Wogum BW, Wagemaker G, Löwenberg B et al. Long-term leukemic-initiating capacity of a CD34- subpopulation of acute myeloid leukemia. Blood 1996; 87: 2187–2193.

    Google Scholar 

  35. Bafico A, Liu G, Goldin L, Harris V, Aaronson SA . An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer cell 2004; 6: 497–506.

    Article  CAS  PubMed  Google Scholar 

  36. Yamane T, Kunisada T, Tsukamoto H, Yamazaki H, Niwa H, Takada S et al. signaling regulates hemopoiesis through stromal cells. J Immunol 2001; 167: 765–772.

    Article  CAS  PubMed  Google Scholar 

  37. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F et al. antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 2004; 5: 91–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research grants and financial support: LY is supported by a grant from the Fondation de France-Fédération Nationale des Centres de Lutte Contre le Cancer. This work was supported by a grant from the Association de Recherche contre le Cancer (contract 3638).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Ysebaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ysebaert, L., Chicanne, G., Demur, C. et al. Expression of β-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 20, 1211–1216 (2006). https://doi.org/10.1038/sj.leu.2404239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404239

Keywords

This article is cited by

Search

Quick links