Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

The pleiotropic effects of the SDF-1–CXCR4 axis in organogenesis, regeneration and tumorigenesis

Abstract

Proper response of normal stem cells (NSC) to motomorphogens and chemoattractants plays a pivotal role in organ development and renewal/regeneration of damaged tissues. Similar chemoattractants may also regulate metastasis of cancer stem cells (CSC). Growing experimental evidence indicates that both NSC and CSC express G-protein-coupled seven-transmembrane span receptor CXCR4 and respond to its specific ligand α-chemokine stromal derived factor-1 (SDF-1), which is expressed by stroma cells from different tissues. In addition, a population of very small embryonic-like (VSEL) stem cells that express CXCR4 and respond robustly to an SDF-1 gradient was recently identified in adult tissues. VSELs express several markers of embryonic and primordial germ cells. It is proposed that these cells are deposited early in the development as a dormant pool of embryonic/pluripotent NSC. Expression of both CXCR4 and SDF-1 is upregulated in response to tissue hypoxia and damage signal attracting circulating NSC and CSC. Thus, pharmacological modulation of the SDF-1–CXCR4 axis may lead to the development of new therapeutic strategies to enhance mobilization of CXCR4+ NSC and their homing to damaged organs as well as inhibition of the metastasis of CXCR4+ cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sell S . Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 2004; 51: 1–28.

    PubMed  Google Scholar 

  2. Pardal R, Clarke MF, Morrison SJ . Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3: 895–902.

    CAS  PubMed  Google Scholar 

  3. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    CAS  PubMed  Google Scholar 

  4. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 axis. Stem Cells 2005; 23: 879–894.

    CAS  PubMed  Google Scholar 

  5. Beachy PA, Karhadkar SS, Berman DM . Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432: 324–331.

    CAS  PubMed  Google Scholar 

  6. Huntly BJ, Gilliland DG . Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5: 311–321.

    CAS  PubMed  Google Scholar 

  7. Dean M, Fojo T, Bates S . Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5: 275–284.

    CAS  PubMed  Google Scholar 

  8. Bagri A, Gurney T, He X, Zou YR, Littman DR, Tessier-Lavigne M et al. The chemokine SDF1 regulates migration of dentate granule cells. Development 2002; 129: 4249–4260.

    CAS  PubMed  Google Scholar 

  9. Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA . Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 2006; 42: 768–778.

    CAS  PubMed  Google Scholar 

  10. Schier AF . Chemokine signaling: rules of attraction. Curr Biol 2003; 13: R192–R194.

    CAS  PubMed  Google Scholar 

  11. Broxmeyer HE, Cooper S, Kohli L, Hangoc G, Lee Y, Mantel C et al. Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J Immunol 2003; 170: 421–429.

    CAS  PubMed  Google Scholar 

  12. Horuk R . Chemokine receptors. Cytokine Growth Factor Rev 2001; 12: 313–335.

    CAS  PubMed  Google Scholar 

  13. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635–638.

    CAS  PubMed  Google Scholar 

  14. Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999; 10: 463–471.

    CAS  PubMed  Google Scholar 

  15. Lu W, Gersting JA, Maheshwari A, Christensen RD, Calhoun DA . Developmental expression of chemokine receptor genes in the human fetus. Early Hum Dev 2005; 81: 489–496.

    CAS  PubMed  Google Scholar 

  16. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005; 280: 35760–35766.

    CAS  PubMed  Google Scholar 

  17. Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M . Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 2003; 42: 139–148.

    PubMed  Google Scholar 

  18. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR . Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595–599.

    CAS  PubMed  Google Scholar 

  19. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393: 591–594.

    CAS  PubMed  Google Scholar 

  20. Medvinsky A, Dzierzak E . Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86: 897–906.

    CAS  PubMed  Google Scholar 

  21. Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D et al. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 2002; 111: 647–659.

    CAS  PubMed  Google Scholar 

  22. Ara T, Nakamura Y, Egawa T, Sugiyama T, Abe K, Kishimoto T et al. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc Natl Acad Sci USA 2003; 100: 5319–5323.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rich IN . Primordial germ cells are capable of producing cells of the hematopoietic system in vitro. Blood 1995; 86: 463–472.

    CAS  PubMed  Google Scholar 

  24. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    CAS  PubMed  Google Scholar 

  25. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    CAS  PubMed  Google Scholar 

  26. Kawabata K, Ujikawa M, Egawa T, Kawamoto H, Tachibana K, Iizasa H et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci USA 1999; 96: 5663–5667.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ara T, Itoi M, Kawabata K, Egawa T, Tokoyoda K, Sugiyama T et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 2003; 170: 4649–4655.

    CAS  PubMed  Google Scholar 

  28. Priestley GV, Scott LM, Ulyanova T, Papayannopoulou T . Lack of alpha4 integrin expression in stem cells restricts competitive function and self-renewal activity. Blood 2006; 107: 2959–2967.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439: 599–603.

    CAS  PubMed  Google Scholar 

  30. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 2003; 34: 70–74.

    CAS  PubMed  Google Scholar 

  31. Haribabu B, Richardson RM, Fisher I, Sozzani S, Peiper SC, Horuk R et al. Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization. J Biol Chem 1997; 272: 28726–28731.

    CAS  PubMed  Google Scholar 

  32. Benboubker L, Watier H, Carion A, Georget MT, Desbois I, Colombat P et al. Association between the SDF1-3′A allele and high levels of CD34(+) progenitor cells mobilized into peripheral blood in humans. Br J Haematol 2001; 113: 247–250.

    CAS  PubMed  Google Scholar 

  33. Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M et al. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science 1998; 279: 389–393.

    CAS  PubMed  Google Scholar 

  34. Guo Y, Hangoc G, Bian H, Pelus LM, Broxmeyer HE . SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells 2005; 23: 1324–1332.

    CAS  PubMed  Google Scholar 

  35. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pituch-Noworolska A, Majka M, Janowska-Wieczorek A, Baj-Krzyworzeka M, Urbanowicz B, Malec E et al. Circulating CXCR4-positive stem/progenitor cells compete for SDF-1-positive niches in bone marrow, muscle and neural tissues: an alternative hypothesis to stem cell plasticity. Folia Histochem Cytobiol 2003; 41: 13–21.

    PubMed  Google Scholar 

  37. Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S et al. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 2003; 21: 363–371.

    CAS  PubMed  Google Scholar 

  38. Damas JK, Eiken HG, Oie E, Bjerkeli V, Yndestad A, Ueland T et al. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 2000; 47: 778–787.

    CAS  PubMed  Google Scholar 

  39. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 2004; 95: 1191–1199.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 2003; 112: 160–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hatch HM, Zheng D, Jorgensen ML, Petersen BE . SDF-1 alpha/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning Stem Cells 2002; 4: 339–351.

    CAS  PubMed  Google Scholar 

  42. Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann NY Acad Sci 2001; 938: 36–45 (discussion 45–37).

    CAS  PubMed  Google Scholar 

  43. Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C . Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 2005; 67: 1772–1784.

    PubMed  Google Scholar 

  44. Li Y, Reca RG, Atmaca-Sonmez P, Ratajczak MZ, Ildstad ST, Kaplan HJ et al. Retinal pigment epithelium damage enhances expression of chemoattractants and migration of bone marrow-derived stem cells. Invest Ophthalmol Vis Sci 2006; 47: 1646–1652.

    PubMed  Google Scholar 

  45. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255: 1137–1141.

    CAS  PubMed  Google Scholar 

  46. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    CAS  PubMed  Google Scholar 

  47. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  48. Singh SK, Clarke ID, Hide T, Dirks PB . Cancer stem cells in nervous system tumors. Oncogene 2004; 23: 7267–7273.

    CAS  PubMed  Google Scholar 

  49. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS . Stem cells in normal breast development and breast cancer. Cell Prolif 2003; 36 (Suppl 1): 59–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xin L, Lawson DA, Witte ON . The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 2005; 102: 6942–6947.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K et al. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci USA 2005; 102: 7180–7185.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946–10951.

    CAS  PubMed  Google Scholar 

  53. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121: 823–835.

    CAS  PubMed  Google Scholar 

  54. Gazitt Y . Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 2004; 18: 1–10.

    CAS  PubMed  Google Scholar 

  55. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    CAS  PubMed  Google Scholar 

  56. Hall JM, Korach KS . Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 2003; 17: 792–803.

    CAS  PubMed  Google Scholar 

  57. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 2003; 89: 462–473.

    CAS  PubMed  Google Scholar 

  58. Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 2002; 100: 2597–2606.

    CAS  PubMed  Google Scholar 

  59. Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 2001; 167: 4747–4757.

    CAS  PubMed  Google Scholar 

  60. Burger JA, Spoo A, Dwenger A, Burger M, Behringer D . CXCR4 chemokine receptors (CD184) and alpha4beta1 integrins mediate spontaneous migration of human CD34+ progenitors and acute myeloid leukaemia cells beneath marrow stromal cells (pseudoemperipolesis). Br J Haematol 2003; 122: 579–589.

    CAS  PubMed  Google Scholar 

  61. Peled A, Hardan I, Trakhtenbrot L, Gur E, Magid M, Darash-Yahana M et al. Immature leukemic CD34+ CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 2002; 20: 259–266.

    CAS  PubMed  Google Scholar 

  62. Cashman J, Clark-Lewis I, Eaves A, Eaves C . Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood 2002; 99: 792–799.

    Article  CAS  PubMed  Google Scholar 

  63. Zannettino AC, Farrugia AN, Kortesidis A, Manavis J, To LB, Martin SK et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 2005; 65: 1700–1709.

    CAS  PubMed  Google Scholar 

  64. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003; 198: 1391–1402.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Helbig G, Christopherson II KW, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 2003; 278: 21631–21638.

    CAS  PubMed  Google Scholar 

  66. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    CAS  PubMed  Google Scholar 

  67. Papayannopoulou T . Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004; 103: 1580–1585.

    CAS  PubMed  Google Scholar 

  68. Orsini MJ, Parent JL, Mundell SJ, Benovic JL, Marchese A . Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization. J Biol Chem 1999; 274: 31076–31086.

    CAS  PubMed  Google Scholar 

  69. Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 2004; 18: 1482–1490.

    CAS  PubMed  Google Scholar 

  70. Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 2005; 105: 40–48.

    CAS  PubMed  Google Scholar 

  71. Berthebaud M, Riviere C, Jarrier P, Foudi A, Zhang Y, Compagno D et al. RGS16 is a negative regulator of SDF-1–CXCR4 signaling in megakaryocytes. Blood 2005; 106: 2962–2968.

    CAS  PubMed  Google Scholar 

  72. Le Y, Honczarenko M, Glodek AM, Ho DK, Silberstein LE . CXC chemokine ligand 12-induced focal adhesion kinase activation and segregation into membrane domains is modulated by regulator of G protein signaling 1 in pro-B cells. J Immunol 2005; 174: 2582–2590.

    CAS  PubMed  Google Scholar 

  73. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J . Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 2004; 18: 29–40.

    CAS  PubMed  Google Scholar 

  74. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003; 107: 1322–1328.

    CAS  PubMed  Google Scholar 

  75. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000; 106: 1331–1339.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10: 858–864.

    CAS  PubMed  Google Scholar 

  77. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W . Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 2003; 425: 307–311.

    CAS  PubMed  Google Scholar 

  78. Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali MA et al. Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel–Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 2005; 65: 6178–6188.

    CAS  PubMed  Google Scholar 

  79. Jin C, Fu WX, Xie LP, Qian XP, Chen WF . SDF-1alpha production is negatively regulated by mouse estrogen enhanced transcript in a mouse thymus epithelial cell line. Cell Immunol 2003; 223: 26–34.

    CAS  PubMed  Google Scholar 

  80. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020–3027.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wright N, de Lera TL, Garcia-Moruja C, Lillo R, Garcia-Sanchez F, Caruz A et al. Transforming growth factor-beta1 down-regulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion. Blood 2003; 102: 1978–1984.

    CAS  PubMed  Google Scholar 

  82. Basu S, Broxmeyer HE . Transforming growth factor-{beta}1 modulates responses of CD34+ cord blood cells to stromal cell-derived factor-1/CXCL12. Blood 2005; 106: 485–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95: 3289–3296.

    CAS  PubMed  Google Scholar 

  84. Kijowski J, Baj-Krzyworzeka M, Majka M, Reca R, Marquez LA, Christofidou-Solomidou M et al. The SDF-1–CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 2001; 19: 453–466.

    CAS  PubMed  Google Scholar 

  85. Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C et al. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood 2002; 99: 1117–1129.

    CAS  PubMed  Google Scholar 

  86. Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 1998; 273: 23169–23175.

    CAS  PubMed  Google Scholar 

  87. Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez AC, Mellado M . The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 1999; 13: 1699–1710.

    CAS  PubMed  Google Scholar 

  88. Petit I, Goichberg P, Spiegel A, Peled A, Brodie C, Seger R et al. Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest 2005; 115: 168–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Majka M, Ratajczak J, Kowalska MA, Ratajczak MZ . Binding of stromal derived factor-1alpha (SDF-1alpha) to CXCR4 chemokine receptor in normal human megakaryoblasts but not in platelets induces phosphorylation of mitogen-activated protein kinase p42/44 (MAPK), ELK-1 transcription factor and serine/threonine kinase AKT. Eur J Haematol 2000; 64: 164–172.

    CAS  PubMed  Google Scholar 

  90. Kremer KN, Humphreys TD, Kumar A, Qian NX, Hedin KE . Distinct role of ZAP-70 and Src homology 2 domain-containing leukocyte protein of 76 kDa in the prolonged activation of extracellular signal-regulated protein kinase by the stromal cell-derived factor-1 alpha/CXCL12 chemokine. J Immunol 2003; 171: 360–367.

    CAS  PubMed  Google Scholar 

  91. Walmsley MJ, Ooi SK, Reynolds LF, Smith SH, Ruf S, Mathiot A et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 2003; 302: 459–462.

    CAS  PubMed  Google Scholar 

  92. Yang FC, Atkinson SJ, Gu Y, Borneo JB, Roberts AW, Zheng Y et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci USA 2001; 98: 5614–5618.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bartolome RA, Galvez BG, Longo N, Baleux F, Van Muijen GN, Sanchez-Mateos P et al. Stromal cell-derived factor-1alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res 2004; 64: 2534–2543.

    CAS  PubMed  Google Scholar 

  94. Okabe S, Fukuda S, Kim YJ, Niki M, Pelus LM, Ohyashiki K et al. Stromal cell-derived factor-1alpha/CXCL12-induced chemotaxis of T cells involves activation of the RasGAP-associated docking protein p62Dok-1. Blood 2005; 105: 474–480.

    CAS  PubMed  Google Scholar 

  95. Fernandis AZ, Cherla RP, Ganju RK . Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J Biol Chem 2003; 278: 9536–9543.

    CAS  PubMed  Google Scholar 

  96. Phillips RJ, Mestas J, Gharaee-Kermani M, Burdick MD, Sica A, Belperio JA et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem 2005; 280: 22473–22481.

    CAS  PubMed  Google Scholar 

  97. Korbling M, Estrov Z . Adult stem cells for tissue repair – a new therapeutic concept? N Engl J Med 2003; 349: 570–582.

    PubMed  Google Scholar 

  98. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ . Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 2005; 19: 1118–1127.

    CAS  PubMed  Google Scholar 

  99. Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K et al. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 2004; 110: 3213–3220.

    CAS  PubMed  Google Scholar 

  100. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 2006; 20: 18–28.

    CAS  PubMed  Google Scholar 

  101. Paczkowska E, Larysz B, Rzeuski R, Karbicka A, Jalowinski R, Kornacewicz-Jach Z et al. Human hematopoietic stem/progenitor-enriched CD34(+) cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction. Eur J Haematol 2005; 75: 461–467.

    CAS  PubMed  Google Scholar 

  102. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N et al. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284: 1168–1170.

    CAS  PubMed  Google Scholar 

  103. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG . Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 2003; 112: 42–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 2003; 21: 763–770.

    CAS  PubMed  Google Scholar 

  105. Long MA, Corbel SY, Rossi FM . Circulating myogenic progenitors and muscle repair. Semin Cell Dev Biol 2005; 16: 632–640.

    CAS  PubMed  Google Scholar 

  106. Sata M, Tanaka K, Nagai R . Circulating osteoblast-lineage cells. N Engl J Med 2005; 353: 737–738 (author reply 737–738.).

    CAS  PubMed  Google Scholar 

  107. Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD et al. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 2006; 176: 1916–1927.

    CAS  PubMed  Google Scholar 

  108. Terashima T, Kojima H, Fujimiya M, Matsumura K, Oi J, Hara M et al. The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy. Proc Natl Acad Sci USA 2005; 102: 12525–12530.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Song YS, Ryu YH, Choi SR, Kim JC . The involvement of adult stem cells originated from bone marrow in the pathogenesis of pterygia. Yonsei Med J 2005; 46: 687–692.

    PubMed  PubMed Central  Google Scholar 

  110. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H et al. Gastric cancer originating from bone marrow-derived cells. Science 2004; 306: 1568–1571.

    CAS  PubMed  Google Scholar 

  111. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362–367.

    CAS  PubMed  Google Scholar 

  113. Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 2004; 64: 8492–8495.

    CAS  PubMed  Google Scholar 

  114. Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S . Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 2005; 105: 3793–3801.

    CAS  PubMed  Google Scholar 

  115. Cogle CR, Scott EW . The hemangioblast: cradle to clinic. Exp Hematol 2004; 32: 885–890.

    PubMed  Google Scholar 

  116. Virchow R . Editorial Archive fuer pathologische. Anat Physiol Klin Med 1855; 8: 23–54.

    Google Scholar 

  117. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    CAS  PubMed  Google Scholar 

  118. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    CAS  PubMed  Google Scholar 

  119. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC . Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004; 117: 2971–2981.

    PubMed  Google Scholar 

  120. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200: 123–135.

    PubMed  PubMed Central  Google Scholar 

  121. Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 2006; 168: 1879–1888.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R et al. Derivation of male germ cells from bone marrow stem cells. Lab Invest 2006; 86: 654–663.

    CAS  PubMed  Google Scholar 

  123. Wagers AJ, Weissman IL . Plasticity of adult stem cells. Cell 2004; 116: 639–648.

    CAS  PubMed  Google Scholar 

  124. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006; 440: 1199–1203.

    CAS  PubMed  Google Scholar 

  125. Dyce PW, Wen L, Li J . In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 2006; 8: 384–390.

    CAS  PubMed  Google Scholar 

  126. Greene WC . The brightening future of HIV therapeutics. Nat Immunol 2004; 5: 867–871.

    CAS  PubMed  Google Scholar 

  127. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol 2004; 22: 1095–1102.

    CAS  PubMed  Google Scholar 

  128. Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 2004; 64: 4302–4308.

    CAS  PubMed  Google Scholar 

  129. Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E et al. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003; 63: 7926–7935.

    CAS  PubMed  Google Scholar 

  130. Chen Y, Stamatoyannopoulos G, Song CZ . Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 2003; 63: 4801–4804.

    CAS  PubMed  Google Scholar 

  131. Gewirtz AM, Sokol DL, Ratajczak MZ . Nucleic acid therapeutics: state of the art and future prospects. Blood 1998; 92: 712–736.

    CAS  PubMed  Google Scholar 

  132. Mazure NM, Brahimi-Horn MC, Berta MA, Benizri E, Bilton RL, Dayan F et al. HIF-1: master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs. Biochem Pharmacol 2004; 68: 971–980.

    CAS  PubMed  Google Scholar 

  133. Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 2004; 6: 33–43.

    CAS  PubMed  Google Scholar 

  134. Christopherson II KW, Hangoc G, Mantel CR, Broxmeyer HE . Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    CAS  PubMed  Google Scholar 

  135. Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR . Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest 2005; 115: 959–968.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an NIH Grant R01 CA106281-01 and R01 DK074720-01 to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajczak, M., Zuba-Surma, E., Kucia, M. et al. The pleiotropic effects of the SDF-1–CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20, 1915–1924 (2006). https://doi.org/10.1038/sj.leu.2404357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404357

Keywords

This article is cited by

Search

Quick links