Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

NOTCH1-induced T-cell leukemia in transgenic zebrafish

Abstract

Activating mutations in the NOTCH1 gene have been found in about 60% of patients with T-cell acute lymphoblastic leukemia (T-ALL). In order to study the molecular mechanisms by which altered Notch signaling induces leukemia, a zebrafish model of human NOTCH1-induced T-cell leukemia was generated. Seven of sixteen mosaic fish developed a T-cell lymphoproliferative disease at about 5 months. These neoplastic cells extensively invaded tissues throughout the fish and caused an aggressive and lethal leukemia when transplanted into irradiated recipient fish. However, stable transgenic fish exhibited a longer latency for leukemia onset. When the stable transgenic line was crossed with another line overexpressing the zebrafish bcl2 gene, the leukemia onset was dramatically accelerated, indicating synergy between the Notch pathway and the bcl2-mediated antiapoptotic pathway. Reverse transcription-polymerase chain reaction analysis showed that Notch target genes such as her6 and her9 were highly expressed in NOTCH1-induced leukemias. The ability of this model to detect a strong interaction between NOTCH1 and bcl2 suggests that genetic modifier screens have a high likelihood of revealing other genes that can cooperate with NOTCH1 to induce T-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 2
Figure 3
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pui CH, Evans WE . Acute lymphoblastic leukemia. N Engl J Med 1998; 339: 605–615.

    Article  CAS  PubMed  Google Scholar 

  2. Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001; 97: 1211–1218.

    Article  CAS  PubMed  Google Scholar 

  3. Chessells JM, Bailey C, Richards SM . Intensification of treatment and survival in all children with lymphoblastic leukaemia: results of UK Medical Research Council trial UKALL X. Medical Research Council Working Party on Childhood Leukaemia. Lancet 1995; 345: 143–148.

    Article  CAS  PubMed  Google Scholar 

  4. Schrappe M, Reiter A, Ludwig WD, Harbott J, Zimmermann M, Hiddemann W et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood 2000; 95: 3310–3322.

    CAS  PubMed  Google Scholar 

  5. Rivera GK, Raimondi SC, Hancock ML, Behm FG, Pui CH, Abromowitch M et al. Improved outcome in childhood acute lymphoblastic leukaemia with reinforced early treatment and rotational combination chemotherapy. Lancet 1991; 337: 61–66.

    Article  CAS  PubMed  Google Scholar 

  6. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770–776.

    Article  CAS  PubMed  Google Scholar 

  7. Mumm JS, Kopan R . Notch signaling: from the outside in. Dev Biol 2000; 228: 151–165.

    Article  CAS  PubMed  Google Scholar 

  8. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    Article  CAS  PubMed  Google Scholar 

  9. Aster JC, Xu L, Karnell FG, Patriub V, Pui JC, Pear WS . Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol Cell Biol 2000; 20: 7505–7515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183: 2283–2291.

    Article  CAS  PubMed  Google Scholar 

  11. Girard L, Hanna Z, Beaulieu N, Hoemann CD, Simard C, Kozak CA et al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev 1996; 10: 1930–1944.

    Article  CAS  PubMed  Google Scholar 

  12. Rohn JL, Lauring AS, Linenberger ML, Overbaugh J . Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. J Virol 1996; 70: 8071–8080.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Weng AP, Ferrando AA, Lee W, Morris JPT, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  14. Lee SY, Kumano K, Masuda S, Hangaishi A, Takita J, Nakazaki K et al. Mutations of the Notch1 gene in T-cell acute lymphoblastic leukemia: analysis in adults and children. Leukemia 2005; 19: 1841–1843.

    Article  CAS  PubMed  Google Scholar 

  15. Mansour MR, Linch DC, Foroni L, Goldstone AH, Gale RE . High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 2006; 20: 537–539.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J et al. NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 2006; 12: 3043–3049.

    Article  CAS  PubMed  Google Scholar 

  17. Feldman BJ, Hampton T, Cleary ML . A carboxy-terminal deletion mutant of Notch1 accelerates lymphoid oncogenesis in E2A-PBX1 transgenic mice. Blood 2000; 96: 1906–1913.

    CAS  PubMed  Google Scholar 

  18. Beverly LJ, Capobianco AJ . Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 2003; 3: 551–564.

    Article  CAS  PubMed  Google Scholar 

  19. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 2003; 299: 887–890.

    Article  CAS  PubMed  Google Scholar 

  20. Thisse C, Zon LI . Organogenesis – heart and blood formation from the zebrafish point of view. Science 2002; 295: 457–462.

    Article  CAS  PubMed  Google Scholar 

  21. Lam SH, Chua HL, Gong Z, Wen Z, Lam TJ, Sin YM . Morphologic transformation of the thymus in developing zebrafish. Dev Dyn 2002; 225: 87–94.

    Article  CAS  PubMed  Google Scholar 

  22. Trede NS, Zon LI . Development of T-cells during fish embryogenesis. Dev Comp Immunol 1998; 22: 253–263.

    Article  CAS  PubMed  Google Scholar 

  23. Trede NS, Zapata A, Zon LI . Fishing for lymphoid genes. Trends Immunol 2001; 22: 302–307.

    Article  CAS  PubMed  Google Scholar 

  24. Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT . Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2005; 102: 6068–6073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI . Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 2003; 4: 1238–1246.

    Article  CAS  PubMed  Google Scholar 

  26. Willett CE, Zapata AG, Hopkins N, Steiner LA . Expression of zebrafish rag genes during early development identifies the thymus. Dev Biol 1997; 182: 331–341.

    Article  CAS  PubMed  Google Scholar 

  27. Willett CE, Cherry JJ, Steiner LA . Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish. Immunogenetics 1997; 45: 394–404.

    Article  CAS  PubMed  Google Scholar 

  28. Jessen JR, Jessen TN, Vogel SS, Lin S . Concurrent expression of recombination activating genes 1 and 2 in zebrafish olfactory sensory neurons. Genesis 2001; 29: 156–162.

    Article  CAS  PubMed  Google Scholar 

  29. Leve C, Gajewski M, Rohr KB, Tautz D . Homologues of c-hairy1 (her9) and lunatic fringe in zebrafish are expressed in the developing central nervous system, but not in the presomitic mesoderm. Dev Genes Evol 2001; 211: 493–500.

    Article  CAS  PubMed  Google Scholar 

  30. Latimer AJ, Shin J, Appel B . her9 promotes floor plate development in zebrafish. Dev Dyn 2005; 232: 1098–1104.

    Article  CAS  PubMed  Google Scholar 

  31. Bae YK, Shimizu T, Hibi M . Patterning of proneuronal and inter-proneuronal domains by hairy- and enhancer of split-related genes in zebrafish neuroectoderm. Development 2005; 132: 1375–1385.

    Article  CAS  PubMed  Google Scholar 

  32. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20: 2096–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol 2006; 26: 8022–8031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J et al. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA 1989; 86: 2031–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Q, Cheng JT, Tasi LH, Schneider N, Buchanan G, Carroll A et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J 1990; 9: 415–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McGuire EA, Hockett RD, Pollock KM, Bartholdi MF, O'Brien SJ, Korsmeyer SJ . The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol 1989; 9: 2124–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greenberg JM, Boehm T, Sofroniew MV, Keynes RJ, Barton SC, Norris ML et al. Segmental and developmental regulation of a presumptive T-cell oncogene in the central nervous system. Nature 1990; 344: 158–160.

    Article  CAS  PubMed  Google Scholar 

  38. Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH . The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 1991; 88: 4367–4371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Royer-Pokora B, Loos U, Ludwig WD . TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 1991; 6: 1887–1893.

    CAS  PubMed  Google Scholar 

  40. Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH . The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 1994; 78: 45–57.

    Article  CAS  PubMed  Google Scholar 

  41. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ . Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 1991; 253: 79–82.

    Article  CAS  PubMed  Google Scholar 

  42. Kennedy MA, Gonzalez-Sarmiento R, Kees UR, Lampert F, Dear N, Boehm T et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 1991; 88: 8900–8904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu M, Gong ZY, Shen WF, Ho AD . The tcl-3 proto-oncogene altered by chromosomal translocation in T-cell leukemia codes for a homeobox protein. EMBO J 1991; 10: 2905–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dube ID, Kamel-Reid S, Yuan CC, Lu M, Wu X, Corpus G et al. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood 1991; 78: 2996–3003.

    CAS  PubMed  Google Scholar 

  45. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  46. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 2003; 23: 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oettinger MA, Schatz DG, Gorka C, Baltimore D . RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990; 248: 1517–1523.

    Article  CAS  PubMed  Google Scholar 

  48. Schatz DG, Oettinger MA, Baltimore D . The V(D)J recombination activating gene, RAG-1. Cell 1989; 59: 1035–1048.

    Article  CAS  PubMed  Google Scholar 

  49. Langenau DM, Jette C, Berghmans S, Palomero T, Kanki JP, Kutok JL et al. Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 2005; 105: 3278–3285.

    Article  CAS  PubMed  Google Scholar 

  50. Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R . The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev 1999; 13: 1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kawamata S, Du C, Li K, Lavau C . Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene 2002; 21: 3855–3863.

    Article  CAS  PubMed  Google Scholar 

  52. Ferrando AA, Look AT . Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol 2000; 37: 381–395.

    Article  CAS  PubMed  Google Scholar 

  53. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Jani-Sait SN, Escalon EA, Carroll AJ, de Jong PJ, Kirsch IR et al. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci USA 2000; 97: 3497–3502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferrando AA, Look AT . Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol 2003; 40: 274–280.

    Article  CAS  PubMed  Google Scholar 

  56. O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 2006; 107: 781–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin YW, Nichols RA, Letterio JJ, Aplan PD . Notch1 mutations are important for leukemic transformation in murine models of precursor-T leukemia/lymphoma. Blood 2006; 107: 2540–2543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Capobianco AJ, Zagouras P, Blaumueller CM, Artavanis-Tsakonas S, Bishop JM . Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol Cell Biol 1997; 17: 6265–6273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lathion S, Schaper J, Beard P, Raj K . Notch1 can contribute to viral-induced transformation of primary human keratinocytes. Cancer Res 2003; 63: 8687–8694.

    CAS  PubMed  Google Scholar 

  60. Rangarajan A, Syal R, Selvarajah S, Chakrabarti O, Sarin A, Krishna S . Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt. Virology 2001; 286: 23–30.

    Article  CAS  PubMed  Google Scholar 

  61. Fitzgerald K, Harrington A, Leder P . Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 2000; 19: 4191–4198.

    Article  CAS  PubMed  Google Scholar 

  62. Bocchetta M, Miele L, Pass HI, Carbone M . Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene 2003; 22: 81–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J Kutok, J Williams, D Skinner and V Nguyen for histology services; G Kourkoulis, J Kilgore, A Hagen and B Baker for excellent fish care; D Zahrieh for Kaplan–Meier survival analysis; A Letai and D Langenau for reagents and discussions. Supported by grants from the National Institute of Health CA-36167 (JDG), CA-68484 (ATL). JC is a fellow of Leukemia and Lymphoma Society. CJ is supported by a National Institute of Health Program Training Grant in Molecular Hematology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Griffin.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Jette, C., Kanki, J. et al. NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 21, 462–471 (2007). https://doi.org/10.1038/sj.leu.2404546

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404546

Keywords

This article is cited by

Search

Quick links