Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia

Abstract

ATP-binding-cassette (ABC) transporters are evolutionary extremely well-conserved transmembrane proteins that are highly expressed in hematopoietic stem cells (HSCs). The physiological function in human stem cells is believed to be protection against genetic damage caused by both environmental and naturally occurring xenobiotics. Additionally, ABC transporters have been implicated in the maintenance of quiescence and cell fate decisions of stem cells. These physiological roles suggest a potential role in the pathogenesis and biology of stem cell-derived hematological malignancies such as acute and chronic myeloid leukemia. This paper reviews the (patho)physiological role of ABC transporters in human normal and malignant HSCs and discusses its implications for their utility as therapeutical targets to eradicate leukemic stem cells in these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Higgins CF . ABC transporters: from microorganisms to man. Annu Rev Cell Biol 1992; 8: 67–113.

    CAS  Google Scholar 

  2. Dean M, Rzhetsky A, Allikmets R . The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11: 1156–1166.

    CAS  Google Scholar 

  3. Borst P, Elferink RO . Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71: 537–592.

    CAS  Google Scholar 

  4. Uchida N, Combs J, Chen S, Zanjani E, Hoffman R, Tsukamoto A . Primitive human hematopoietic cells displaying differential efflux of the rhodamine 123 dye have distinct biological activities. Blood 1996; 88: 1297–1305.

    CAS  Google Scholar 

  5. Zijlmans JM, Visser JW, Kleiverda K, Kluin PM, Willemze R, Fibbe WE . Modification of rhodamine staining allows identification of hematopoietic stem cells with preferential short-term or long-term bone marrow-repopulating ability. Proc Natl Acad Sci USA 1995; 92: 8901–8905.

    CAS  Google Scholar 

  6. Spangrude GJ, Brooks DM, Tumas DB . Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 1995; 85: 1006–1016.

    CAS  Google Scholar 

  7. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 3: 1337–1345.

    CAS  Google Scholar 

  8. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    CAS  Google Scholar 

  9. Leemhuis T, Yoder MC, Grigsby S, Aguero B, Eder P, Srour EF . Isolation of primitive human bone marrow hematopoietic progenitor cells using Hoechst 33342 and rhodamine 123. Exp Hematol 1996; 24: 1215–1224.

    CAS  Google Scholar 

  10. Uchida N, Dykstra B, Lyons K, Leung F, Kristiansen M, Eaves C . ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status. Blood 2004; 103: 4487–4495.

    CAS  Google Scholar 

  11. Chaudhary PM, Roninson IB . Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66: 85–94.

    CAS  Google Scholar 

  12. Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA 1997; 94: 4028–4033.

    CAS  Google Scholar 

  13. Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491–502.

    CAS  Google Scholar 

  14. Uchida N, Leung FY, Eaves CJ . Liver and marrow of adult mdr-1a/1b(−/−) mice show normal generation, function, and multi-tissue trafficking of primitive hematopoietic cells. Exp Hematol 2002; 30: 862–869.

    CAS  Google Scholar 

  15. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7: 1028–1034.

    CAS  Google Scholar 

  16. Scharenberg CW, Harkey MA, Torok-Storb B . The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002; 99: 507–512.

    CAS  Google Scholar 

  17. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP . Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 2002; 99: 12339–12344.

    CAS  Google Scholar 

  18. Smeets M, Raymakers R, Vierwinden G, Pennings A, van de LL, Wessels H et al. A low but functionally significant MDR1 expression protects primitive haemopoietic progenitor cells from anthracycline toxicity. Br J Haematol 1997; 96: 346–355.

    CAS  Google Scholar 

  19. Ueda T, Brenner S, Malech HL, Langemeijer SM, Perl S, Kirby M et al. Cloning and functional analysis of the rhesus macaque ABCG2 gene. Forced expression confers an SP phenotype among hematopoietic stem cell progeny in vivo. J Biol Chem 2005; 280: 991–998.

    CAS  Google Scholar 

  20. Raaijmakers MH, van Emst L, De Witte T, Mensink E, Raymakers RA . Quantitative assessment of gene expression in highly purified hematopoietic cells using real-time reverse transcriptase polymerase chain reaction. Exp Hematol 2002; 30: 481–487.

    CAS  Google Scholar 

  21. Johnson DR, Finch RA, Lin ZP, Zeiss CJ, Sartorelli AC . The pharmacological phenotype of combined multidrug-resistance mdr1a/1b- and mrp1-deficient mice. Cancer Res 2001; 61: 1469–1476.

    CAS  Google Scholar 

  22. van Tellingen O, Buckle T, Jonker JW, van d V, Beijnen JH . P-glycoprotein and Mrp1 collectively protect the bone marrow from vincristine-induced toxicity in vivo. Br J Cancer 2003; 89: 1776–1782.

    CAS  Google Scholar 

  23. Szakacs G, Annereau JP, Lababidi S, Shankavaram U, Arciello A, Bussey KJ et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 2004; 6: 129–137.

    CAS  Google Scholar 

  24. Ross DD, Doyle LA . Mining our ABCs: pharmacogenomic approach for evaluating transporter function in cancer drug resistance. Cancer Cell 2004; 6: 105–107.

    CAS  Google Scholar 

  25. de Grouw EP, Raaijmakers MH, Boezeman JB, van der Reijden BA, van de Locht LT, de Witte TJ et al. Preferential expression of a high number of ATP binding cassette transporters in both normal and leukemic CD34+CD38− progenitor cells. Leukemia 2006; 20: 750–754.

    CAS  Google Scholar 

  26. Gillet JP, Efferth T, Steinbach D, Hamels J, de Longueville F, Bertholet V et al. Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res 2004; 64: 8987–8993.

    CAS  Google Scholar 

  27. Good JR, Kuspa A . Evidence that a cell-type-specific efflux pump regulates cell differentiation in Dictyostelium. Dev Biol 2000; 220: 53–61.

    CAS  Google Scholar 

  28. Bunting KD, Zhou S, Lu T, Sorrentino BP . Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 2000; 96: 902–909.

    CAS  Google Scholar 

  29. Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino BP . Effects of retroviral-mediated MDR1 expression on hematopoietic stem cell self-renewal and differentiation in culture. Ann NY Acad Sci 1999; 872: 125–140.

    CAS  Google Scholar 

  30. Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino BP . Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 1998; 92: 2269–2279.

    CAS  Google Scholar 

  31. Sellers SE, Tisdale JF, Agricola BA, Metzger ME, Donahue RE, Dunbar CE et al. The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells. Blood 2001; 97: 1888–1891.

    CAS  Google Scholar 

  32. Kiem HP, Sellers S, Thomasson B, Morris JC, Tisdale JF, Horn PA et al. Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol Ther 2004; 9: 389–395.

    CAS  Google Scholar 

  33. Hesdorffer C, Ayello J, Ward M, Kaubisch A, Vahdat L, Balmaceda C et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol 1998; 16: 165–172.

    CAS  Google Scholar 

  34. Abonour R, Williams DA, Einhorn L, Hall KM, Chen J, Coffman J et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med 2000; 6: 652–658.

    CAS  Google Scholar 

  35. Morita Y, Ema H, Yamazaki S, Nakauchi H . Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 2006; 108: 2850–2856.

    CAS  Google Scholar 

  36. Zhou S, Zong Y, Lu T, Sorrentino BP . Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques 2003; 35: 1248–1252.

    CAS  Google Scholar 

  37. van de Ven V, de Jong MC, Reurs AW, Schoonderwoerd AJ, Jansen G, Hooijberg JH et al. Dendritic cells require multidrug resistance protein 1 (ABCC1) transporter activity for differentiation. J Immunol 2006; 176: 5191–5198.

    CAS  Google Scholar 

  38. Echevarria-Lima J, Kyle-Cezar F, DF PL, Capella L, Capella MA, Rumjanek VM . Expression and activity of multidrug resistance protein 1 in a murine thymoma cell line. Immunology 2005; 114: 468–475.

    CAS  Google Scholar 

  39. Raaijmakers MHGP, Van den Bosch G, Boezeman J, De Witte T, Raymakers RA . Single-cell image analysis to assess ABC-transporter-mediated efflux in highly purified hematopoietic progenitors. Cytometry 2002; 49: 135–142.

    CAS  Google Scholar 

  40. Lorico A, Rappa G, Finch RA, Yang D, Flavell RA, Sartorelli AC . Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res 1997; 57: 5238–5242.

    CAS  Google Scholar 

  41. Wijnholds J, Evers R, van Leusden MR, Mol CA, Zaman GJ, Mayer U et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med 1997; 3: 1275–1279.

    CAS  Google Scholar 

  42. Johnstone RW, Cretney E, Smyth MJ . P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 1999; 93: 1075–1085.

    CAS  Google Scholar 

  43. Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW . The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA 1998; 95: 7024–7029.

    CAS  Google Scholar 

  44. Pallis M, Turzanski J, Higashi Y, Russell N . P-glycoprotein in acute myeloid leukaemia: therapeutic implications of its association with both a multidrug-resistant and an apoptosis-resistant phenotype. Leuk Lymphoma 2002; 43: 1221–1228.

    CAS  Google Scholar 

  45. Lehne G, Sorensen DR, Tjonnfjord GE, Beiske C, Hagve TA, Rugstad HE et al. The cyclosporin PSC 833 increases survival and delays engraftment of human multidrug-resistant leukemia cells in xenotransplanted NOD-SCID mice. Leukemia 2002; 16: 2388–2394.

    CAS  Google Scholar 

  46. Pondarre C, Campagna DR, Antiochos B, Sikorski L, Mulhern H, Fleming MD . Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood 2007; 109: 3567–3569.

    CAS  Google Scholar 

  47. Piehler A, Kaminski WE, Wenzel JJ, Langmann T, Schmitz G . Molecular structure of a novel cholesterol-responsive A subclass ABC transporter, ABCA9. Biochem Biophys Res Commun 2002; 295: 408–416.

    CAS  Google Scholar 

  48. Wenzel JJ, Kaminski WE, Piehler A, Heimerl S, Langmann T, Schmitz G . ABCA10, a novel cholesterol-regulated ABCA6-like ABC transporter. Biochem Biophys Res Commun 2003; 306: 1089–1098.

    CAS  Google Scholar 

  49. Rizzo MT . The role of arachidonic acid in normal and malignant hematopoiesis. Prostaglandins Leukot Essent Fatty Acids 2002; 66: 57–69.

    CAS  Google Scholar 

  50. Peeters SD, van der Kolk DM, de HG, Bystrykh L, Kuipers F, de Vries EG et al. Selective expression of cholesterol metabolism genes in normal CD34+CD38− cells with a heterogeneous expression pattern in AML cells. Exp Hematol 2006; 34: 622–630.

    CAS  Google Scholar 

  51. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    CAS  Google Scholar 

  52. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    CAS  Google Scholar 

  53. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    CAS  Google Scholar 

  54. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.

    CAS  Google Scholar 

  55. Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL . Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 2003; 100: 10002–10007.

    CAS  Google Scholar 

  56. Holyoake T, Jiang X, Eaves C, Eaves A . Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 1999; 94: 2056–2064.

    CAS  Google Scholar 

  57. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M et al. A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 2000; 95: 1007–1013.

    CAS  Google Scholar 

  58. Nilsson L, Astrand-Grundstrom I, Anderson K, Arvidsson I, Hokland P, Bryder D et al. Involvement and functional impairment of the CD34(+)CD38(−)Thy-1(+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood 2002; 100: 259–267.

    CAS  Google Scholar 

  59. Dean M, Fojo T, Bates S . Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5: 275–284.

    CAS  Google Scholar 

  60. Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 2001; 98: 1166–1173.

    CAS  Google Scholar 

  61. Raaijmakers MH, de Grouw EP, van der Reijden BA, de Witte TJ, Jansen JH, Raymakers RA . ABCB1 modulation does not circumvent drug extrusion from primitive leukemic progenitor cells and may preferentially target residual normal cells in acute myelogenous leukemia. Clin Cancer Res 2006; 12 (11 Part 1): 3452–3458.

    CAS  Google Scholar 

  62. Feuring-Buske M, Hogge DE . Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(−) progenitor cells from patients with acute myeloid leukemia. Blood 2001; 97: 3882–3889.

    CAS  Google Scholar 

  63. Mahadevan D, List AF . Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies. Blood 2004; 104: 1940–1951.

    CAS  Google Scholar 

  64. Baer MR, George SL, Dodge RK, O'Loughlin KL, Minderman H, Caligiuri MA et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002; 100: 1224–1232.

    CAS  Google Scholar 

  65. Raaijmakers MH, de Grouw EP, Heuver LH, van der Reijden BA, Jansen JH, Scheper RJ et al. Breast cancer resistance protein in drug resistance of primitive CD34+38− cells in acute myeloid leukemia. Clin Cancer Res 2005; 11: 2436–2444.

    CAS  Google Scholar 

  66. van der Kolk DM, Vellenga E, Scheffer GL, Muller M, Bates SE, Scheper RJ et al. Expression and activity of breast cancer resistance protein (BCRP) in de novo and relapsed acute myeloid leukemia. Blood 2002; 99: 3763–3770.

    CAS  Google Scholar 

  67. Allen JD, van Loevezijn A, Lakhai JM, van d V, van Tellingen O, Reid G et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 2002; 1: 417–425.

    CAS  Google Scholar 

  68. List AF, Kopecky KJ, Willman CL, Head DR, Persons DL, Slovak ML et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001; 98: 3212–3220.

    CAS  Google Scholar 

  69. Qadir M, O'Loughlin KL, Fricke SM, Williamson NA, Greco WR, Minderman H et al. Cyclosporin A is a broad-spectrum multidrug resistance modulator. Clin Cancer Res 2005; 11: 2320–2326.

    CAS  Google Scholar 

  70. Steinbach D, Gillet JP, Sauerbrey A, Gruhn B, Dawczynski K, Bertholet V et al. ABCA3 as a possible cause of drug resistance in childhood acute myeloid leukemia. Clin Cancer Res 2006; 12 (Part 1): 4357–4363.

    CAS  Google Scholar 

  71. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    CAS  Google Scholar 

  72. Thomas J, Wang L, Clark RE, Pirmohamed M . Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004; 104: 3739–3745.

    CAS  Google Scholar 

  73. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 2003; 101: 2368–2373.

    CAS  Google Scholar 

  74. Illmer T, Schaich M, Platzbecker U, Freiberg-Richter J, Oelschlagel U, von BM et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 2004; 18: 401–408.

    CAS  Google Scholar 

  75. Rumpold H, Wolf AM, Gruenewald K, Gastl G, Gunsilius E, Wolf D . RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines. Exp Hematol 2005; 33: 767–775.

    CAS  Google Scholar 

  76. Ferrao PT, Frost MJ, Siah SP, Ashman LK . Overexpression of P-glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in vitro. Blood 2003; 102: 4499–4503.

    CAS  Google Scholar 

  77. Zong Y, Zhou S, Sorrentino BP . Loss of P-glycoprotein expression in hematopoietic stem cells does not improve responses to imatinib in a murine model of chronic myelogenous leukemia. Leukemia 2005; 19: 1590–1596.

    CAS  Google Scholar 

  78. Crossman LC, Druker BJ, Deininger MW, Pirmohamed M, Wang L, Clark RE . hOCT 1 and resistance to imatinib. Blood 2005; 106: 1133–1134.

    CAS  Google Scholar 

  79. O'Hare T, Corbin AS, Druker BJ . Targeted CML therapy: controlling drug resistance, seeking cure. Curr Opin Genet Dev 2006; 16: 92–99.

    CAS  Google Scholar 

  80. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  Google Scholar 

  81. Burger H, van TH, Boersma AW, Brok M, Wiemer EA, Stoter G et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004; 104: 2940–2942.

    CAS  Google Scholar 

  82. Breedveld P, Pluim D, Cipriani G, Wielinga P, van TO, Schinkel AH et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 2005; 65: 2577–2582.

    CAS  Google Scholar 

  83. Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 2004; 64: 2333–2337.

    CAS  Google Scholar 

  84. Nakanishi T, Shiozawa K, Hassel BA, Ross DD . Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 2006; 108: 678–684.

    CAS  Google Scholar 

  85. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC . Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006; 108: 1370–1373.

    CAS  Google Scholar 

  86. Leith CP, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, McConnell TS et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 1999; 94: 1086–1099.

    CAS  Google Scholar 

  87. Leith CP, Kopecky KJ, Godwin J, McConnell T, Slovak ML, Chen IM et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997; 89: 3323–3329.

    CAS  Google Scholar 

  88. Pirker R, Wallner J, Geissler K, Linkesch W, Haas OA, Bettelheim P et al. MDR1 gene expression and treatment outcome in acute myeloid leukemia. J Natl Cancer Inst 1991; 83: 708–712.

    CAS  Google Scholar 

  89. Greenberg PL, Lee SJ, Advani R, Tallman MS, Sikic BI, Letendre L et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 2004; 22: 1078–1086.

    CAS  Google Scholar 

  90. Cripe LD, Xiaochun LI, Litzow M, Paietta E, Rowe JM, Luger S et al. A randomized, placebo-controlled, double blind trial of the MDR modulator, zosuquidar, during conventional induction and post-remission therapy for pts>60 years of age with newly diagnosed acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (HR-MDS): ECOG 3999. Blood 2006; 108, Abstract no. 423.

  91. van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 2005; 11: 6520–6527.

    CAS  Google Scholar 

  92. van den Heuvel-Eibrink MM, Wiemer EA, de Boevere MJ, van der HB, Vossebeld PJ, Pieters R et al. MDR1 gene-related clonal selection and P-glycoprotein function and expression in relapsed or refractory acute myeloid leukemia. Blood 2001; 97: 3605–3611.

    CAS  Google Scholar 

  93. Calado RT, Garcia AB, Gallo DA, Falcao RP . Reduced function of the multidrug resistance P-glycoprotein in CD34+ cells of patients with aplastic anaemia. Br J Haematol 2002; 118: 320–326.

    CAS  Google Scholar 

  94. Ohara A, Kojima S, Hamajima N, Tsuchida M, Imashuku S, Ohta S et al. Myelodysplastic syndrome and acute myelogenous leukemia as a late clonal complication in children with acquired aplastic anemia. Blood 1997; 90: 1009–1013.

    CAS  Google Scholar 

  95. Jamroziak K, Mlynarski W, Balcerczak E, Mistygacz M, Trelinska J, Mirowski M et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol 2004; 72: 314–321.

    CAS  Google Scholar 

  96. Siegsmund M, Brinkmann U, Schaffeler E, Weirich G, Schwab M, Eichelbaum M et al. Association of the P-glycoprotein transporter MDR1(C3435T) polymorphism with the susceptibility to renal epithelial tumors. J Am Soc Nephrol 2002; 13: 1847–1854.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H G P Raaijmakers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raaijmakers, M. ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia. Leukemia 21, 2094–2102 (2007). https://doi.org/10.1038/sj.leu.2404859

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404859

Keywords

This article is cited by

Search

Quick links