Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32)

Abstract

T-cell prolymphocytic leukemia (T-PLL) is a rare aggressive lymphoma derived from mature T cells, which is, in most cases, characterized by the presence of an inv(14)(q11q32)/t(14;14)(q11;q32) and a characteristic pattern of secondary chromosomal aberrations. DNA microarray technology was employed to compare the transcriptomes of eight immunomagnetically purified CD3+ normal donor-derived peripheral blood cell samples, with five highly purified inv(14)/t(14;14)-positive T-PLL blood samples. Between the two experimental groups, 734 genes were identified as differentially expressed, including functionally important genes involved in lymphomagenesis, cell cycle regulation, apoptosis and DNA repair. Notably, the differentially expressed genes were found to be significantly enriched in genomic regions affected by recurrent chromosomal imbalances. Upregulated genes clustered on chromosome arms 6p and 8q, and downregulated genes on 6q, 8p, 10p, 11q and 18p. High-resolution copy-number determination using single nucleotide polymorphism chip technology in 12 inv(14)/t(14;14)-positive T-PLL including those analyzed for gene expression, refined chromosomal breakpoints as well as regions of imbalances. In conclusion, combined transcriptional and molecular cytogenetic profiling identified novel specific chromosomal loci and genes that are likely to be involved in disease progression and suggests a gene dosage effect as a pathogenic mechanism in T-PLL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Herling M, Khoury JD, Washington LT, Duvic M, Keating MJ, Jones D . A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood 2004; 104: 328–335.

    Article  CAS  Google Scholar 

  2. Matutes E, Brito-Babapulle V, Swansbury J, Ellis J, Morilla R, Dearden C et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood 1991; 78: 3269–3274.

    CAS  Google Scholar 

  3. Soulier J, Pierron G, Vecchione D, Garand R, Brizard F, Sigaux F et al. A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer 2001; 31: 248–254.

    Article  CAS  Google Scholar 

  4. Dearden CE, Matutes E, Cazin B, Tjonnfjord GE, Parreira A, Nomdedeu B et al. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood 2001; 98: 1721–1726.

    Article  CAS  Google Scholar 

  5. Dearden CE . T-cell prolymphocytic leukemia. Med Oncol 2006; 23: 17–22.

    Article  Google Scholar 

  6. Brito-Babapulle V, Pomfret M, Matutes E, Catovsky D . Cytogenetic studies on prolymphocytic leukemia. II. T cell prolymphocytic leukemia. Blood 1987; 70: 926–931.

    CAS  Google Scholar 

  7. Croce CM . Role of chromosome translocations in human neoplasia. Cell 1987; 49: 155–156.

    Article  CAS  Google Scholar 

  8. Pekarsky Y, Hallas C, Croce CM . The role of TCL1 in human T-cell leukemia. Oncogene 2001; 20: 5638–5643.

    Article  CAS  Google Scholar 

  9. Pekarsky Y, Hallas C, Croce CM . Molecular basis of mature T-cell leukemia. JAMA 2001; 286: 2308–2314.

    Article  CAS  Google Scholar 

  10. Virgilio L, Lazzeri C, Bichi R, Nibu K, Narducci MG, Russo G et al. Deregulated expression of TCL1 causes T cell leukemia in mice. Proc Natl Acad Sci USA 1998; 95: 3885–3889.

    Article  CAS  Google Scholar 

  11. Stankovic T, Taylor AMR, Yuille MR, Vorechovsky I . Recurrent ATM mutations in T-PLL on diverse haplotypes: no support for their germline origin. Blood 2001; 97: 1517–1518.

    Article  CAS  Google Scholar 

  12. Stilgenbauer S, Schaffner C, Litterst A, Liebisch P, Gilad S, BarShira A et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med 1997; 3: 1155–1159.

    Article  CAS  Google Scholar 

  13. Schoch C, Kohlmann A, Dugas M, Kern W, Hiddemann W, Schnittger S et al. Genomic gains and losses influence expression levels of genes located within the affected regions: a study on acute myeloid leukemias with trisomy 8, 11, or 13, monosomy 7, or deletion 5q. Leukemia 2005; 19: 1224–1228.

    Article  CAS  Google Scholar 

  14. Staudt LM . Molecular diagnosis of the hematologic cancers. New Engl J Med 2003; 348: 1777–1785.

    Article  CAS  Google Scholar 

  15. Walker BA, Leone PE, Jenner MW, Li C, Gonzalez D, Johnson DC et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 2006; 108: 1733–1743.

    Article  CAS  Google Scholar 

  16. Haslinger C, Schweifer N, Stilgenbauer S, Dohner H, Lichter P, Kraut N et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol 2004; 22: 3937–3949.

    Article  CAS  Google Scholar 

  17. Jaffe ES, Harris N, Stein H, Vardiman JW . Tumours of Hematopoietic and Lymphoid Tissues. WHO Classification of Tumours. IARC Press: Lyon, 2001.

    Google Scholar 

  18. Baudis M, Cleary ML . Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics 2001; 17: 1228–1229.

    Article  CAS  Google Scholar 

  19. Baudis M . Online database and bioinformatics toolbox to support data mining in cancer cytogenetics. Biotechniques 2006; 40: 269–270.

    Article  CAS  Google Scholar 

  20. Schroers R, Griesinger F, Trumper L, Haase D, Kulle B, Klein-Hitpass L et al. Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 750–758.

    Article  CAS  Google Scholar 

  21. Wu B . Differential gene expression detection using penalized linear regression models: the improved SAM statistics. Bioinformatics 2005; 21: 1565–1571.

    Article  CAS  Google Scholar 

  22. Beissbarth T, Speed TP . GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 2004; 20: 1464–1465.

    Article  CAS  Google Scholar 

  23. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM . Systematic determination of genetic network architecture. Nat Genet 1999; 22: 281–285.

    Article  CAS  Google Scholar 

  24. Martin-Subero JI, Harder L, Gesk S, Schlegelberger B, Grote W, Martinez-Climent JA et al. Interphase FISH assays for the detection of translocations with breakpoints in immunoglobulin light chain loci. Int J Cancer 2002; 98: 470–474.

    Article  CAS  Google Scholar 

  25. Mitelman F . ISCN: an International System for Human Cytogenetic Nomenclature. Karger: Basel, 1995.

    Google Scholar 

  26. Matsuzaki H, Dong S, Loi H, Di X, Liu G, Hubbell E et al. Genotyping over 100 000 SNPs on a pair of oligonucleotide arrays. Nat Methods 2004; 1: 109–111.

    Article  CAS  Google Scholar 

  27. Jöns T, Drenckhahn D . Anion exchanger 2 (AE2) binds to erythrocyte ankyrin and is colocalized with ankyrin along the basolateral plasma membrane of human gastric parietal cells. Eur J Cell Biol 1998; 75: 232–236.

    Article  Google Scholar 

  28. De Schouwer PJJC, Dyer MJS, Brito-Babapulle VB, Matutes E, Catovsky D, Yuille MR . T-cell prolymphocytic leukaemia: antigen receptor gene rearrangement and a novel mode of MTCP1 B1 activation. Br J Haematol 2000; 110: 831–838.

    Article  CAS  Google Scholar 

  29. Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A . Expression of 2 T-cell receptor-alpha chains – dual receptor T-cells. Science 1993; 262: 422–424.

    Article  CAS  Google Scholar 

  30. Vorwerk P, Wex H, Hohmann B, Mohnike K, Schmidt U, Mittler U . Expression of components of the IGF signalling system in childhood acute lymphoblastic leukaemia. J Clin Pathol Mol Pathol 2002; 55: 40–45.

    Article  CAS  Google Scholar 

  31. Sorour A, Brito-Babapulle V, Smedley D, Yuille M, Catovsky D . Unusual breakpoint distribution of 8p abnormalities in T-prolymphocytic leukemia: a study with YACS mapping to 8p11-p12. Cancer Genet Cytogenet 2000; 121: 128–132.

    Article  CAS  Google Scholar 

  32. Raghavan M, Lillington DM, Skoulakis S, Debernardi S, Chaplin T, Foot NJ et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res 2005; 65: 375–378.

    CAS  Google Scholar 

  33. Murthy SK, DiFrancesco LM, Ogilvie RT, Demetrick DJ . Loss of heterozygosity associated with uniparental disomy in breast carcinoma. Mod Pathol 2002; 15: 1241–1250.

    Article  Google Scholar 

  34. Nielaender I, Martin-Subero JI, Wagner F, Martinez-Climent JA, Siebert R . Partial uniparental disomy: a recurrent genetic mechanism alternative to chromosomal deletion in malignant lymphoma. Leukemia 2006; 20: 904–905.

    Article  CAS  Google Scholar 

  35. Di Benedetto M, Bieche I, Deshayes F, Vacher S, Nouet S, Collura V et al. Structural organization and expression of human MTUS1, a candidate 8p22 tumor suppressor gene encoding a family of angiotensin II AT2 receptor-interacting proteins, ATIP. Gene 2006; 380: 127–136.

    Article  CAS  Google Scholar 

  36. Chen YC, Su YN, Chou PC, Chiang WC, Chang MC, Wang LS et al. Overexpression of NBS1 contributes to transformation through the activation of phosphatidylinositol 3-kinase/Akt. J Biol Chem 2005; 280: 32505–32511.

    Article  CAS  Google Scholar 

  37. Ehlers JP, Harbour JW . NBS1 expression as a prognostic marker in uveal melanoma. Clin Cancer Res 2005; 11: 1849–1853.

    Article  CAS  Google Scholar 

  38. Yang MH, Chiang WC, Chou TY, Chang SY, Chen PM, Teng SC et al. Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. Clin Cancer Res 2006; 12: 507–515.

    Article  CAS  Google Scholar 

  39. Saitou M, Sugimoto J, Hatakeyama T, Russo G, Isobe M . Identification of the TCL6 genes within the breakpoint cluster region on chromosome 14q32 in T-cell leukemia. Oncogene 2000; 19: 2796–2802.

    Article  CAS  Google Scholar 

  40. Hallas C, Pekarsky Y, Itoyama T, Varnum J, Bichi R, Rothstein JL et al. Genomic analysis of human and mouse TCL1 loci reveals a complex of tightly clustered genes. Proc Natl Acad Sci USA 1999; 96: 14418–14423.

    Article  CAS  Google Scholar 

  41. Pekarsky Y, Koval A, Hallas C, Bichi R, Tresini M, Malstrom S et al. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci USA 2000; 97: 3028–3033.

    Article  CAS  Google Scholar 

  42. Emi M, Fujiwara Y, Nakajima T, Tsuchiya E, Tsuda H, Hirohashi S et al. Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res 1992; 52: 5368–5372.

    CAS  Google Scholar 

  43. Gelsi-Boyer V, Orsetti B, Cervera N, Finetti P, Sircoulomb F, Rouge C et al. Comprehensive profiling of 8p11-12 amplification in breast cancer. Mol Cancer Res 2005; 3: 655–667.

    Article  CAS  Google Scholar 

  44. Hryniewicz-Jankowska A, Czogalla A, Bok E, Sikorsk AF . Ankyrins, multifunctional proteins involved in many cellular pathways. Folia Histochem Cytobiol 2002; 40: 239–249.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Anja Führer, Ute Schmücker, Reina Zühlke-Jenisch, Doris Schuster and Claudia Becher for excellent technical assistance and numerous colleagues for contributing patient samples and information on their clinical course and treatment histories. This work is dedicated to Professor G Brittinger on the occasion of his 75th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Dürig.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dürig, J., Bug, S., Klein-Hitpass, L. et al. Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32). Leukemia 21, 2153–2163 (2007). https://doi.org/10.1038/sj.leu.2404877

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404877

Keywords

This article is cited by

Search

Quick links