Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia

Abstract

In order to examine antioxidant status and lipid peroxidation in schizophrenia patients, activities of three free radical scavenging enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT)), and the level of thiobarbituric acid-reactive substances (TBARS) as an index of lipid peroxidation have been studied in red blood cells. Schizophrenic patients were divided into three groups (disorganized (n = 21), paranoid (n = 26) and residual types (n = 18)) to determine differences between subgroups. SOD, CAT and GSH-Px activities in the control group were found to be 1461.0 ± 248.6 U g1 Hb, 148.2 ± 59.3 k g1 Hb and 25.87 ± 4.25 U g1 Hb, respectively. We found no significant differences in SOD activities between study and control groups. There was a significant increase in SOD activity in the residual group compared to the paranoid group (P < 0.005). CAT activity was found to be increased in disorganized (148%), paranoid (147%), and residual (165%) groups compared to the control group. GSH-Px activity was markedly increased in the study groups except the paranoid group. Statistically significant (3–4 fold) increases in TBARS levels of red blood cells were found in all the study groups. It is proposed that antioxidant status may be changed in schizophrenia and thus may induce lipid peroxidation. Therefore, oxidative stress may have a pathophysiological role in all the subtypes of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Esterbauer H . Cytotoxicity and genotoxicity of lipid-oxidation products Am J Clin Nutr 1993 57: (5 Suppl) 779–785

    Article  Google Scholar 

  2. Fridovich I . Superoxide radical: an endogenous toxicant Annu Rev Pharmacol Toxicol 1983 23: 239–257. [Review]

    Article  CAS  Google Scholar 

  3. Mahadik SP, Mukherjee S . Free radical pathology and antioxidant defense in schizophrenia: a review Schizophr Res 1996 19: 1–17. [Review]

    Article  CAS  PubMed  Google Scholar 

  4. Jiang HK, Wang YY . Diurnal melatonin and cortisol secretion profiles in medicated schizophrenic patients J Formos Med Assoc 1998 97: 830–837

    CAS  PubMed  Google Scholar 

  5. Edgar PF, Douglas JE, Cooper GJ, Dean B, Kydd R, Faull RL . Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia Mol Psychiatry 2000 5: 85–90

    Article  CAS  PubMed  Google Scholar 

  6. Yao JK, Reddy R, McElhinny LG, van Kammen DP . Effects of haloperidol on antioxidant defense system enzymes in schizophrenia J Psychiatr Res 1998 32: 385–391

    Article  CAS  PubMed  Google Scholar 

  7. Rachkauskas GS . The level of lipid peroxidation and the function of the antioxidant system in different forms of schizophrenia Lik Sprava 1998 5: 92–93. [Russian]

    Google Scholar 

  8. Yamada K, Kanba S, Anamizu S, Ohnichi K, Ashikari J, Yagi G, Asai M . Low superoxide dismutase in schizophrenic patients with tardive dyskinesia Psychol Med 1997 27: 1223–1225

    Article  CAS  PubMed  Google Scholar 

  9. Mukerjee S, Mahadik SP, Scheffer R, Correnti EE, Kelkar H . Impaired antioxidant defense at the onset of psychosis Schizophr Res 1996 19: 19–26

    Article  CAS  PubMed  Google Scholar 

  10. Overall JE, Gorhan DR . The brief psychiatric rating scale Psychol Reports 1962 10: 799–812

    Article  Google Scholar 

  11. Aebi H. Catalase . In: Bergmeyer HU (ed). Methods of Enzymatic Analysis Academic Press: New York and London 1974 pp 673–677

  12. Sun Y, Oberley LW, Li Y . A simple method for clinical assay of superoxide dismutase Clin Chem 1988 34: 497–500

    CAS  PubMed  Google Scholar 

  13. Durak I, Yurtarslani Z, Canbolat O, Akyol O . A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction Clin Chim Acta 1993 214: 103–104

    Article  CAS  PubMed  Google Scholar 

  14. McCord JM, Fridovich I . Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) J Biol Chem 1969 244: 6049–6055

    CAS  Google Scholar 

  15. Paglia DE, Valentine WN . Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase J Lab Clin Med 1967 70: 158–170

    CAS  Google Scholar 

  16. Wasowicz W, Neve J, Peretz A . Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: importance of extraction pH and influence of sample preservation and storage Clin Chem 1993 39: 2522–2526

    CAS  PubMed  Google Scholar 

  17. Reddy R, Sahebarao MP, Mukherjee S, Murthy JN . Enzymes of the antioxidant defense system in chronic schizophrenic patients Biol Psychiatry 1991 30: 409–412

    Article  CAS  PubMed  Google Scholar 

  18. Michelson AM, Puget K, Durosay P, Bouneau JC . Clinical aspects of the dosage of erythrocuprein. In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide and Superoxide Dismutase Academic Press: London 1977 pp 467–499

    Google Scholar 

  19. Abdalla DS, Monteiro HP, Oliveira JA, Bechara EJ . Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic-depressive patients Clin Chem 1986 32: 805–807

    CAS  PubMed  Google Scholar 

  20. Sinet PM, Debray Q, Carmagnol F, Pelicier Y, Nicole A, Jerome H . Normal erythrocyte SOD values in two human diseases: schizophrenia and cystic fibrosis. In: Greenwald RA, Cohen G (eds) Oxy Radicals and Their Scavenger Systems. Vol II: Cellular and Medical Aspects Elsevier: New York 1983 pp 302–304

    Google Scholar 

  21. Buckman TD, Kling AS, Eiduson S, Sutphin MS, Steinberg A . Glutathione peroxidase and CT scan abnormalities in schizophrenia Biol Psychiatry 1987 22: 349–356

    Article  Google Scholar 

  22. Whatley SA, Curti D, Das Gupta F, Ferrier IN, Jones S, Taylor C et al. Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients Mol Psychiatry 1998 3: 227–237

    Article  CAS  PubMed  Google Scholar 

  23. Abdalla DS, Bechara EJ . The effect of chlorpromazine and Li2CO3 on the superoxide dismutase and glutathione peroxidase activities of rat brain, liver and erythrocytes Biochem Mol Biol Int 1994 34: 1085–1090

    CAS  PubMed  Google Scholar 

  24. Buckman TD, Kling AS, Eiduson S, Sutphin MS, Steinberg A, Eiduson S . Platelet glutathione peroxidase and monoamine oxidase activity in schizophrenics with CT scan abnormalities: relation to psychosocial variables Psychiatry Res 1990 31: 1–14

    Article  CAS  PubMed  Google Scholar 

  25. Yao JK, Reddy RD, van Kammen DP . Human plasma glutathione peroxidase and symptom severity in schizophrenia Biol Psychiatry 1999 45: 1512–1515

    Article  CAS  PubMed  Google Scholar 

  26. Jesberger JA, Richardson JS . Oxygen free radicals and brain dysfunction Int J Neurosci 1991 57: 1–17. [Review]

    Article  CAS  PubMed  Google Scholar 

  27. Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT . Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia Am J Psychiatry 1998 155: 1207–1213

    Article  CAS  PubMed  Google Scholar 

  28. Sachdev P, Saharov T, Cathcart S . The preventative role of antioxidants (selegiline and vitamin E) in a rat model of tardive dyskinesia Biol Psychiatry 1999 46: 1672–1681

    Article  CAS  PubMed  Google Scholar 

  29. Elkashef AM, Wyatt RJ . Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E Schizophr Bull 1999 25: 731–740

    Article  CAS  PubMed  Google Scholar 

  30. Dorfman-Etrog P, Hermesh H, Prilipko L, Weizman A, Munitz H . The effect of vitamin E addition to acute neuroleptic treatment on the emergence of extrapyramidal side effects in schizophrenic patients: an open label study Eur Neuropsychopharmacol 1999 9: 475–477

    Article  CAS  PubMed  Google Scholar 

  31. Vatassery GT, Bauer T, Dysken M . High doses of vitamin E in the treatment of disorders of the central nervous system in the aged Am J Clin Nutr 1999 70: 793–801

    Article  CAS  PubMed  Google Scholar 

  32. Keshavan MS, Mallinger AG, Pettegrew JW, Dippold C . Erythrocyte membrane phospholipids in psychotic patients Psychiatry Res 1993 49: 89–95

    Article  CAS  PubMed  Google Scholar 

  33. Horrobin DF, Manku MS, Hillman S, Iain A, Glen M . Fatty acid levels in brains of schizophrenics and normal controls Biol Psychiatry 1991 30: 795–805

    Article  CAS  PubMed  Google Scholar 

  34. Yao JK, Yasei P, van Kammen DP . Increased turn-over of platelet phosphatidylinositol in schizophrenia Prostaglandins Leukot Essent Fatty Acids 1992 46: 39–46

    Article  CAS  PubMed  Google Scholar 

  35. Yao JK, van Kammen DP, Welker JA . Red blood cell membrane dynamics in schizophrenia. I. Membrane fluidity Schizophr Res 1994 11: 209–216

    Article  CAS  PubMed  Google Scholar 

  36. Yao JK, van Kammen DP, Welker JA . Red blood cell membrane dynamics in schizophrenia. II. Fatty acid composition Schizophr Res 1994 13: 217–226

    Article  CAS  PubMed  Google Scholar 

  37. Yao JK, van Kammen DP . Incorporation of [3H] arachidonic acid into platelet phospholipids of patients with schizophrenia Prostaglandins Leukot Essent Fatty Acids 1996 55: 21–26

    Article  CAS  PubMed  Google Scholar 

  38. Yao JK, van Kammen DP, Gurklis J . Abnormal incorporation of arachidonic acid into platelets of drug-free patients with schizophrenia Psychiatry Res 1996 60: 11–21

    Article  CAS  PubMed  Google Scholar 

  39. Yao JK, Leonard S, Reddy RD . Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients Schizophr Res 2000 42: 7–17

    Article  CAS  PubMed  Google Scholar 

  40. Fenton WS, Hibbeln J, Knable M . Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia Biol Psychiatry 2000 47: 8–21

    Article  CAS  PubMed  Google Scholar 

  41. Maes M, Smith RS . Fatty acids, cytokines and major depression (editorial) Biol Psychiatry 1998 43: 313–314

    Article  CAS  PubMed  Google Scholar 

  42. Salem N Jr . Alcohol, fatty acids and diet Alcohol Health Res World 1989 13: 211–218

    Google Scholar 

  43. Nilsson A, Horrobin DF, Rosengren A, Waller L, Adlerberth A, Wilhelmsen L . Essential fatty acids and abnormal involuntary movements in the general male population: a study of men born in 1933 Prostaglandins Leukot Essent Fatty Acids 1996 55: 83–87

    Article  CAS  PubMed  Google Scholar 

  44. Martinez M, Vasquez E . MRI evidence that docosahexaenoic acid ethyl ester improves myelination in generalized peroxisomal disorders Neurology 1998 51: 26–32

    Article  CAS  Google Scholar 

  45. Gattaz WF, Schmitt A, Maras A . Increased platelet phospholipase A2 activity in schizophrenia Schizophr Res 1995 16: 1–6

    Article  CAS  PubMed  Google Scholar 

  46. Gattaz WF, Kollish M, Thuren T, Virtanen JA, Kunnunen PKJ . Increased plasma phospholipase-A activity in schizophrenic patients: reduction after neuroleptic therapy Biol Psychiatry 1987 22: 421–426

    Article  CAS  PubMed  Google Scholar 

  47. Mathe AA, Sedvall G, Wiesel FA, Nyback H . Increased content of immunoreactive prostaglandin E in cerebrospinal fluid of patients with schizophrenia Lancet 1980 1: 16–18

    Article  CAS  PubMed  Google Scholar 

  48. Kaiya H, Uematsu M, Ofuji M, Nishida A, Takeuchi K, Nozaki M et al. Elevated plasma prostaglandin E2 levels in schizophrenia J Neural Transm 1989 77: 39–46

    Article  CAS  PubMed  Google Scholar 

  49. Linnoila M, Whorton R, Rubinow DR, Cowdry RW, Ninan PT, Waters RN . CSF prostaglandin levels in depressed and schizophrenic patients Arch Gen Psychiatry 1983 40: 405–406

    Article  CAS  PubMed  Google Scholar 

  50. Gerner R, Merrill J . Cerebrospinal fluid prostaglandin E in depression, mania, and schizophrenia compared to normals Biol Psychiatry 1983 18: 565–569

    CAS  PubMed  Google Scholar 

  51. Mahadik SP, Scheffer RE . Oxidative injury and potential use of antioxidants in schizophrenia Prostglandins Leukot Essent Fatty Acids 1996 55: 45–54

    Article  CAS  Google Scholar 

  52. Evans PH . Free radicals in brain metabolism and pathology Br Med Bull 1993 49: 577–587

    Article  CAS  PubMed  Google Scholar 

  53. Beauclair L, Vinogradov S, Riney SJ, Csernansky JG, Hollister LE . An adjunctive role for ascorbic acid in the treatment of schizophrenia? J Clin Psychopharmacol 1987 7: 282–283

    Article  CAS  PubMed  Google Scholar 

  54. Kanofsky JD, Sandyk R . Antioxidants in the treatment of schizophrenia Int J Neurosci 1992 62: 97–100. [Letter]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ö Akyol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herken, H., Uz, E., Özyurt, H. et al. Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol Psychiatry 6, 66–73 (2001). https://doi.org/10.1038/sj.mp.4000789

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000789

Keywords

This article is cited by

Search

Quick links