Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau

Abstract

The oceanic nation of Palau has been geographically and culturally isolated over most of its 2000 year history. As part of a study of the genetic basis of schizophrenia in Palau, we genotyped five large, multigenerational schizophrenia pedigrees using markers every 10 cM (CHLC/Weber screening set 6). The number of affected/unaffected individuals genotyped per family ranged from 11/21 to 5/5. Thus the pedigrees varied in their information for linkage, but each was capable of producing a substantial LOD score. We fitted a simple dominant and recessive model to these data using multipoint linkage analysis implemented by Simwalk2. Predictably, the most informative pedigrees produced the best linkage results. After genotyping additional markers in the region, one pedigree produced a LOD = 3.4 (5q distal) under the dominant model. Seven of nine schizophrenics in the pedigree, mostly 3rd–4th degree relatives, share a 15-cM, 7-marker haplotype. For a different pedigree, another promising signal occurred on distal 3q, LOD = 2.6, for the recessive model. For two other pedigrees, the best LODs were modest, slightly better than 2.0 on 5q and 9p, while the fifth pedigree produced no noteworthy linkage signal. Similar to the results for other populations, our results suggest there are multiple genes conferring liability to schizophrenia even in the small population of Palau (roughly 21 000 individuals) in remote Oceania.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Gottesman II . Schizophrenia Genesis: the Origins of Madness WH Freeman: New York 1991

    Google Scholar 

  2. Jablensky A, Sartorius N, Ernberg G, Anker M, Korten A, Cooper JE et al. Schizophrenia: manifestations, incidence and course in different cultures Psychol Med 1992; 22 [Monograph Suppl 20]: 1–97

    Google Scholar 

  3. Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F et al. Genomic scan for genes predisposing to schizophrenia Am J Med Genet 1994; 54: 59–71

    Article  CAS  PubMed  Google Scholar 

  4. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12–q13.1: Part 1 Am J Med Genet 1994; 54: 36–43

    Article  CAS  PubMed  Google Scholar 

  5. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes Am J Med Genet (Neuropsych Genet) 1995; 60: 252–260

    Article  CAS  Google Scholar 

  6. Straub RE, MacLean CJ, O'Neill A, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22, evidence for genetic heterogeneity Nat Genet 1995; 11: 287–293

    Article  CAS  PubMed  Google Scholar 

  7. Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS . Support for a possible vulnerability locus in region 5q22–31 in Irish families Mol Psychiatry 1997; 2: 148–155

    Article  CAS  PubMed  Google Scholar 

  8. Straub RE, MacLean C, Martin RB, Yunlong M, Myakisehev V, Harris-Kerr C et al. A schizophrenia locus may be located in region 10p15-p11 Neuropsychiatric Genet 1998; 81: 296–301

    Article  CAS  Google Scholar 

  9. Schwab SG, Albus M, Hallmayer J, Honig S, Bormann M, Lichtermann D et al. Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis Nat Genet 1995; 11: 325–327

    Article  CAS  PubMed  Google Scholar 

  10. Schwab SG, Eckstein GN, Hallmayer J, Lerer B, Albus M, Borrmann M et al. Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis Mol Psychiatry 1997; 2: 156–160

    Article  CAS  PubMed  Google Scholar 

  11. Schwab SG, Hallmayer J, Albus M, Lerer B, Hanses C, Kanyas K et al. Further evidence for a susceptibility locus on chromosomse 10p14-p11 in 72 families with schizophrenia by nonparametric analysis Neuropsychiatric Genet 1998; 81: 302–307

    Article  CAS  Google Scholar 

  12. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11 Proc Natl Acad Sci USA 1995; 92: 7612–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international two-stage genome-wide search for schizophrenia susceptibility genes Nat Genet 1995; 11: 321–324

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Sun C, Walczak CA, Ziegle JS, Kipps BR, Goldin LR et al. Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22 Nat Genet 1995; 10: 41–46

    Article  PubMed  Google Scholar 

  15. Faraone SV, Matise T, Svrakie D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European-American schizophrenia pedigrees: Results of the NIMH Genetics Initiative and Millennium Consortium Neuropsychiatric Genet 1998; 81: 290–295

    Article  CAS  Google Scholar 

  16. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21 Nat Genet 1998; 20: 70–73

    Article  CAS  PubMed  Google Scholar 

  17. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22 Science 2000; 288: 678–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jorde LB . Linkage disequilibrium as a gene-mapping tool Am J Hum Genet 1995; 56: 11–14

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jorde LB . Linkage disequilibrium and the search for complex disease genes Genome Res 2000; 10: 1435–1444

    Article  CAS  PubMed  Google Scholar 

  20. Takayama J . Early pottery and population movements in Micronesian prehistory Asian Perspectives 1981; 24: 1–10

    Google Scholar 

  21. Parmentier RJ . The Sacred Remains, Myth, History and Polity in Belau Univ of Chicago Press: Chicago 1987

    Google Scholar 

  22. Simmons R, Graydon J, Gajdusek D, Brown P . Blood group genetic variations in natives of the Caroline Islands and in other parts of Micronesia Oceania 1965; 36: 132–170

    Article  Google Scholar 

  23. Lum JK, Cann RL . mtDNA lineage analyses: origins and migrations of Micronesians and Polynesians Amer J Phys Anthro 2000; 113: 151–168

    Article  CAS  Google Scholar 

  24. Devlin B, Roeder K, Otto C, Tiobech S, Byerley B . Genome-wide distribution of linkage disequilibrium in the population of Palau and its implications for gene flow in remote Oceania Hum Genet 2001; 108: 521–528

    Article  CAS  PubMed  Google Scholar 

  25. Coon H, Myles-Worsley M, Tiobech J, Hoff M, Rosenthal J, Bennett P et al. Evidence for a chromosome 2p13–14 schizophrenia susceptibility locus in families from Palau, Micronesia Mol Psychiatry 1999; 3: 521–527

    Article  Google Scholar 

  26. Endicott J, Spitzer RL . A diagnostic interview: the schedule for affective disorders and schizophrenia Arch Gen Psychiatry 1978; 35: 837–844

    Article  CAS  PubMed  Google Scholar 

  27. Spitzer RL, Endicott J, Robins E . Research diagnostic criteria Arch Gen Psychiatry 1978; 35: 773–782

    Article  CAS  PubMed  Google Scholar 

  28. Bell G, Karam J, Rutter W . Polymorphic DNA region adjacent to the 5′ end of the human insulin gene Proc Nat Acad Sci USA 1981; 78: 5759–5763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cooperative Human Linkage Center (CHLC): Genethon, University of Utah, Yale University, and Centre d'Etude du Polymorphisme Humain. A comprehensive human linkage map with centiMorgan density Science 1994; 265: 2049–2054

  30. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis Am J Hum Genet 1998; 63: 259–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ott J . Analysis of Human Genetic Linkage The Johns Hopkins University Press: Baltimore 1991

    Google Scholar 

  32. Sobel E, Lange K . Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics Am J Hum Genet 1996; 58: 1323–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Thompson EA . Monte Carlo likelihood in genetic mapping Stat Sci 1994; 9: 355–366

    Article  Google Scholar 

  34. Paunio T, Ekelund J, Hovatta I, Varilo T, Terwilliger JD, Meyer J et al. Genome wide scan of an extended Finnish schizophrenia study sample Am J Med Genet 2000; 6: 460

    Google Scholar 

  35. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23 Am J Hum Genet 2001; 68: 661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Camp NJ, Neuhausen SL, Tiobech J, Polloi A, Coon H, Myles-Worsley M . Genomewide multipoint linkage analysis of seven extended Palauan pedigrees with schizophrenia, by a Markov–Chain Monte Carlo method Am J Hum Genet 2001; 69: 1278–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci Am J Hum Genet 1999; 65: 1114–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sheffield VC, Stone EM, Carmi R . Use of isolated inbred human populations for identification of disease genes Trends Genet 1998; 14: 391–396

    Article  CAS  PubMed  Google Scholar 

  39. Sheffield VC, Nishimura D, Stone EM . The molecular genetics of Bardet-Biedl syndrome Curr Opin Genet Dev 2001; 11: 317–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research supported by NIMH grants MH57881 to BD and KR and MH56098 to BB. We thank Marina Myles-Worsley for some genealogical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Byerley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devlin, B., Bacanu, SA., Roeder, K. et al. Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau. Mol Psychiatry 7, 689–694 (2002). https://doi.org/10.1038/sj.mp.4001056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001056

Keywords

This article is cited by

Search

Quick links