Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Higher scores of self reported schizotypy in healthy young males carrying the COMT high activity allele

Abstract

The gene for COMT is located on chromosome 22q11, an area that has been implicated in the pathogenesis of schizophrenia through linkage studies and through the detection of deletions in schizophrenics and velocardiofacial syndrome patients that often present psychotic symptomatology. Additionally catechol-O-methyl transferase activity has been found increased in schizophrenia and a functional polymorphism in the COMT gene itself has been associated with the disease, as well as with aggression in patients. We tested the hypothesis that COMT genotype for the functional Val158Met might contribute to the variance of self reported schizotypy and aggression scores in the normal population. We genotyped 379 healthy 18- to 24-year-old male individuals who had completed the PAS, SPQ and AQ questionnaires. Our results showed that self-reported schizotypy scores in both questionnaires were significantly related to COMT genotype (P = 0.028 for the PAS and P = 0.015 for the SPQ) with individuals homozygous for the high activity allele showing the highest scores. No significant differences were detected for AQ scores. We conclude that the COMT genotype for the functional Val158Met polymorphism is correlated to self-reported schizotypy in healthy males. This finding is in the same direction as reported findings on schizophrenia and it adds to the list of evidence that COMT or a nearby gene in linkage disequilibrium is involved in the pathogenesis of the disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12–q13.1: Part 1 Am J Med Genet 1994; 54: 36–43

    Article  CAS  PubMed  Google Scholar 

  2. Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F et al. Genomic scan for genes predisposing to schizophrenia Am J Med Genet 1994; 54: 59–71

    Article  CAS  PubMed  Google Scholar 

  3. Lasseter VK, Pulver AE, Wolyniec PS, Nestadt G, Meyers D, Karayiorgou M et al. Follow-up report of potential linkage for schizophrenia on chromosome 22q: Part 3 Am J Med Genet 1995; 60: 172–173

    Article  CAS  PubMed  Google Scholar 

  4. Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R et al. A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22) Am J Med Genet 1996; 67: 40–45

    Article  CAS  PubMed  Google Scholar 

  5. Wildenauer DB, Hallmayer J, Schwab SG, Albus M, Eckstein GN, Zill P et al. Searching for susceptibility genes in schizophrenia by genetic linkage analysis Cold Spring Harb Symp Quant Biol 1996; 61: 845–850

    Article  CAS  PubMed  Google Scholar 

  6. Shaw SH, Kelly M, Smith AB, Shields G, Hopkins PJ, Loftus J et al. A genome-wide search for schizophrenia susceptibility genes Am J Med Genet 1998; 81: 364–376

    Article  CAS  PubMed  Google Scholar 

  7. Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives J Nerv Ment Dis 1994; 182: 476–478

    Article  CAS  PubMed  Google Scholar 

  8. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo-cardio-facial syndrome Arch Gen Psychiatry 1999; 56: 940–945

    Article  CAS  PubMed  Google Scholar 

  9. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11 Proc Natl Acad Sci USA 1995; 92: 7612–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Axelrod J . Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines Pharmacol Rev 1966; 18: 95–113

    CAS  PubMed  Google Scholar 

  11. Matthysse S, Baldessarini RJ . S-adenosylmethionine and catechol-O-methyl-transferase in schizophrenia Am J Psychiatry 1972; 128: 1310–1312

    Article  CAS  PubMed  Google Scholar 

  12. Poitou P, Assicot M, Bohuon C . Soluble and membrane catechol-o-methyl transferases in red blood cells of schizophrenic patients Biomedicine 1974; 21: 91–93

    CAS  PubMed  Google Scholar 

  13. White HL, McLeod MN, Davidson JR . Catechol O-methyltransferase in red blood cells of schizophrenic, depressed, and normal human subjects Br J Psychiatry 1976; 128: 184–187

    Article  CAS  PubMed  Google Scholar 

  14. Ebstein R, Belmaker RH, Benbenisty D, Rimon R . Electrophoretic pattern of red blood cell catechol-o-methyltransferase in schizophrenia and manic-depressive illness Biol Psychiatry 1976; 11: 613–623

    CAS  PubMed  Google Scholar 

  15. Groshong R, Baldessarini RJ, Gibson DA, Lipinski JF, Axelrod D, Pope A . Activities of types A and B MAO and catechol-o-methyltransferase in blood cells and skin fibroblasts of normal and chronic schizophrenic subjects Arch Gen Psychiatry 1978; 35: 1198–1205

    Article  CAS  PubMed  Google Scholar 

  16. Baron M, Gruen R, Levitt M, Hunter C, Asnis L . Erythrocytecatechol O-methyltransferase activity in schizophrenia: analysis of family data Am J Psychiatry 1984; 141: 29–32

    Article  CAS  PubMed  Google Scholar 

  17. Weinshilboum RM, Raymond FA . Inheritance of low erythrocyte catechol-o-methyltransferase activity in man Am J Hum Genet 1977; 29: 125–135

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Spielman RS, Weinshilboum RM . Genetics of red cell COMT activity: analysis of thermal stability and family data Am J Med Genet 1981; 10: 279–290

    Article  CAS  PubMed  Google Scholar 

  19. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme Biochemistry 1995; 34: 4202–4210

    Article  CAS  PubMed  Google Scholar 

  20. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders Pharmacogenetics 1996; 6: 243–250

    Article  CAS  PubMed  Google Scholar 

  21. Li T, Sham PC, Vallada H, Xie T, Tang X, Murray RM et al. Preferential transmission of the high activity allele of COMT in schizophrenia Psychiatr Genet 1996; 6: 131–133

    Article  CAS  PubMed  Google Scholar 

  22. Kunugi H, Vallada HP, Sham PC, Hoda F, Arranz MJ, Li T et al. Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families Psychiatr Genet 1997; 7: 97–101

    Article  CAS  PubMed  Google Scholar 

  23. Li T, Ball D, Zhao J, Murray RM, Liu X, Sham PC et al. Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11 Mol Psychiatry 2000; 5: 77–84

    Article  CAS  PubMed  Google Scholar 

  24. Wei J, Hemmings GP . Lack of evidence for association between the COMT locus and schizophrenia Psychiatr Genet 1999; 9: 183–186

    Article  CAS  PubMed  Google Scholar 

  25. Karayiorgou M, Gogos JA, Galke BL, Wolyniec PS, Nestadt G, Antonarakis SE et al. Identification of sequence variants and analysis of the role of the catechol-O-methyl-transferase gene in schizophrenia susceptibility Biol Psychiatry 1998; 43: 425–431

    Article  CAS  PubMed  Google Scholar 

  26. Strous RD, Bark N, Woerner M, Lachman HM . Lack of association of a functional catechol-O-methyltransferase gene polymorphism in schizophrenia Biol Psychiatry 1997; 41: 493–495

    Article  CAS  PubMed  Google Scholar 

  27. Risch N . Genetic linkage and complex diseases, with special reference to psychiatric disorders Genet Epidemiol 1990; 7: 3–16

    Article  CAS  PubMed  Google Scholar 

  28. Tyrka AR, Cannon TD, Haslam N, Mednick SA, Schulsinger F, Schulsinger H et al. The latent structure of schizotypy: I. Premorbid indicators of a taxon of individuals at risk for schizophrenia-spectrum disorders J Abnorm Psychol 1995; 104: 173–183

    Article  CAS  PubMed  Google Scholar 

  29. Webb CT, Levinson DF . Schizotypal and paranoid personality disorder in the relatives of patients with schizophrenia and affective disorders: a review Schizophr Res 1993; 11: 81–92

    Article  CAS  PubMed  Google Scholar 

  30. Maier W, Lichtermann D, Minges J, Heun R . Personality disorders among the relatives of schizophrenia patients Schizophr Bull 1994; 20: 481–493

    Article  CAS  PubMed  Google Scholar 

  31. Kremen WS, Faraone SV, Toomey R, Seidman LJ, Tsuang MT . Sex differences in self-reported schizotypal traits in relatives of schizophrenic probands Schizophr Res 1998; 34: 27–37

    Article  CAS  PubMed  Google Scholar 

  32. Yaralian PS, Raine A, Lencz T, Hooley JM, Bihrle SE, Mills S et al. Elevated levels of cognitive-perceptual deficits in individuals with a family history of schizophrenia spectrum disorders Schizophr Res 2000; 46: 57–63

    Article  CAS  PubMed  Google Scholar 

  33. Lyons MJ, Toomey R, Faraone SV, Kremen WS, Yeung AS, Tsuang MT . Correlates of psychosis proneness in relatives of schizophrenic patients J Abnorm Psychol 1995; 104: 390–394

    Article  CAS  PubMed  Google Scholar 

  34. Torgersen S, Lygren S, Oien PA, Skre I, Onstad S, Edvardsen J et al. A twin study of personality disorders Compr Psychiatry 2000; 41: 416–425

    Article  CAS  PubMed  Google Scholar 

  35. Fanous A, Gardner C, Walsh D, Kendler KS . Relationship between positive and negative symptoms of schizophrenia and schizotypal symptoms in nonpsychotic relatives Arch Gen Psychiatry 2001; 58: 669–673

    Article  CAS  PubMed  Google Scholar 

  36. Raine A . The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria Schizophr Bull 1991; 17: 555–564

    Article  CAS  PubMed  Google Scholar 

  37. Chapman LJ, Chapman JP, Raulin ML . Scales for physical and social anhedonia J Abnorm Psychol 1976; 85: 374–382

    Article  CAS  PubMed  Google Scholar 

  38. Coleman MJ, Levy DL, Lenzenweger MF, Holzman PS . Thought disorder, perceptual aberrations, and schizotypy J Abnorm Psychol 1996; 105: 469–473

    Article  CAS  PubMed  Google Scholar 

  39. Laurent A, Biloa-Tang M, Bougerol T, Duly D, Anchisi AM, Bosson JL et al. Executive/attentional performance and measures of schizotypy in patients with schizophrenia and in their nonpsychotic first-degree relatives Schizophr Res 2000; 46: 269–283

    Article  CAS  PubMed  Google Scholar 

  40. Strous RD, Bark N, Parsia SS, Volavka J, Lachman HM . Analysis of a functional catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association with aggressive and antisocial behavior Psychiatry Res 1997; 69: 71–77

    Article  CAS  PubMed  Google Scholar 

  41. Lachman HM, Nolan KA, Mohr P, Saito T, Volavka J . Association between catechol O-methyltransferase genotype and violence in schizophrenia and schizoaffective disorder Am J Psychiatry 1998; 155: 835–837

    CAS  PubMed  Google Scholar 

  42. Buss AH, Perry M . The aggression questionnaire J Pers Soc Psychol 1992; 63: 452–459

    Article  CAS  PubMed  Google Scholar 

  43. Cloninger CR, Svrakic DM, Przybeck TR . A psychobiological model of temperament and character Arch Gen Psychiatry 1993; 50: 975–990

    Article  CAS  PubMed  Google Scholar 

  44. de Vries HG, Collee JM, van Veldhuizen MH, Achterhof L, Smit Sibinga CT, Scheffer H et al. Validation of the determination of deltaF508 mutations of the cystic fibrosis gene in over 11 000 mouthwashes Hum Genet 1996; 97: 334–336

    Article  CAS  PubMed  Google Scholar 

  45. Kirov G, Murphy KC, Arranz MJ, Jones I, McCandles F, Kunugi H et al. Low activity allele of catechol-O-methyltransferase gene associated with rapid cycling bipolar disorder Mol Psychiatry 1998; 3: 342–345

    Article  CAS  PubMed  Google Scholar 

  46. Adler LE, Freedman R, Ross RG, Olincy A, Waldo MC . Elementary phenotypes in the neurobiological and genetic study of schizophrenia Biol Psychiatry 1999; 46: 8–18

    Article  CAS  PubMed  Google Scholar 

  47. Arolt V, Lencer R, Nolte A, Muller-Myhsok B, Purmann S, Schurmann M et al. Eye tracking dysfunction is a putative phenotypic susceptibility marker of schizophrenia and maps to a locus on chromosome 6p in families with multiple occurrence of the disease Am J Med Genet 1996; 67: 564–579

    Article  CAS  PubMed  Google Scholar 

  48. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus Proc Natl Acad Sci USA 1997; 94: 587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Myles-Worsley M, Coon H, McDowell J, Brenner C, Hoff M, Lind B et al. Linkage of a composite inhibitory phenotype to a chromosome 22q locus in eight Utah families Am J Med Genet 1999; 88: 544–550

    Article  CAS  PubMed  Google Scholar 

  50. Schwab SG, Albus M, Hallmayer J, Honig S, Borrmann M, Lichtermann D et al. Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis Nat Genet 1995; 11: 325–327

    Article  CAS  PubMed  Google Scholar 

  51. Riley BP, Makoff A, Mogudi-Carter M, Jenkins T, Williamson R, Collier D et al. Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families Am J Med Genet 2000; 96: 196–201

    Article  CAS  PubMed  Google Scholar 

  52. Karoum F, Chrapusta SJ, Egan MF . 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model J Neurochem 1994; 63: 972–979

    Article  CAS  PubMed  Google Scholar 

  53. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior Proc Natl Acad Sci USA 1998; 95: 9991–9996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kneavel M, Gogos JA, Karayiorgou M, Luine V . Interaction of COMT gene deletion and environment on cognition Soc Neurosci Abstracts 2000; 26: 571.20

    Google Scholar 

  55. Weinberger DR, Berman KF, Zec RF . Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence Arch Gen Psychiatry 1986; 43: 114–124

    Article  CAS  PubMed  Google Scholar 

  56. Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD . Functional hypofrontality and working memory dysfunction in schizophrenia Am J Psychiatry 1998; 155: 1285–1287

    Article  CAS  PubMed  Google Scholar 

  57. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited Cereb Cortex 2000; 10: 1078–1092

    Article  CAS  PubMed  Google Scholar 

  58. Park S, Holzman PS, Goldman-Rakic PS . Spatial working memory deficits in the relatives of schizophrenic patients Arch Gen Psychiatry 1995; 52: 821–828

    Article  CAS  PubMed  Google Scholar 

  59. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia Proc Natl Acad Sci USA 2001; 98: 6917–6922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by GSRT grant 97EKBAN107 to CNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C N Stefanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avramopoulos, D., Stefanis, N., Hantoumi, I. et al. Higher scores of self reported schizotypy in healthy young males carrying the COMT high activity allele. Mol Psychiatry 7, 706–711 (2002). https://doi.org/10.1038/sj.mp.4001070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001070

Keywords

This article is cited by

Search

Quick links